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Résumé et mots-clés

Résumé: Cette thèse de doctorat s’intéresse à la diffusion de l’innovation.

Nous commençons par nous interroger sur la mesure de la diffusion de l’innovation. Nous
montrons que les citations inscrites dans le texte des brevets constituent des candidats de premier
plan pour mesurer cette diffusion. Nous constituons une base de données fiable et exhaustive
de ces citations dans le corpus des brevets américains.

Par la suite, nous nous penchons sur l’histoire de l’innovation telle que décrite par le corpus
des brevets en Europe et aux Etat-Unis. Nous publions une base de données nouvelle nous
permettant de retracer les caractéristiques des inventeurs (en particulier leur adresse, profession
et titre académique) depuis le XIXe siècle en Allemagne, en France, au Royaume-Uni et aux
Etats-Unis. Cela nous permet notamment de faire apparaître des divergences majeures entre ces
différents pays, notamment dans les domaines de la concentration géographique des l’innovation,
du rôle de l’immigration dans l’innovation et des caractéristiques des inventeurs.

Pour finir, nous nous intéressons à la contribution des principaux pays développés et émergents
aux technologies “frontières”. Il apparaît notamment que si la Chine présente toujours un
héritage caractéristique d’un pays en rattrapage technologique, cet héritage est en passe de
s’effacer pour laisser place à une puissance technologique de premier plan, comparable aux
Etat-Unis.

Mots-clés: Diffusion de l’innovation, Traitement automatisé du langage, Citations de brevets,
Histoire de l’innovation, Technologie frontière





Foreword

In this PhD thesis, I developed a research programme on innovation diffusion. This research
programme resulted in three papers constituting this PhD thesis.

I started by questioning the standard measurement device of virtually any work related to
innovation diffusion using patents, that is the use of front-page patent citations as a proxy of
knowledge flows. In Verluise et al (2022)1, we show that the data generating process of in-text
patent citations makes them immune to many of the sources of noise affecting the traditional
front-page patent citations. This makes in-text patent citations arguably a better proxy of
knowledge flows. We provide a novel and accurate dataset of in-text patent citations covering
more than 10 million US patents (https://zenodo.org/record/4391095). The data generating
process has been open-sourced (https://github.com/cverluise/PatCit). We hope that our
results and dataset will help improve empirical measurements of knowledge flows.

Next, I realized that most of our understanding of the historical stylized facts of inno-
vation diffusion are based on the US only, while the rest of the world remained almost
terra incognita. In Bergeaud and Verluise (2022)2 we tried to rectify this situation. We
used modern Natural Language Processing to extract key patentees’ data (location, oc-
cupation, citizenship) from German (including East German), French, British and US
patents since the late 19th century. While such data were inexistent (except for the
US) before 1980, we leverage this novel database to deep dive into the long run dynam-
ics of innovation. We find a large degree of heterogeneity between countries regarding
the geographic concentration of innovative activities, the globalisation of innovation and
the role of immigrants in importing knowledge. The data-generating codebase has been
open-sourced (https://github.com/cverluise/patentcity) and the dataset is publicly available
(https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PG6THV). We
hope that this will stimulate research on the long run heterogeneity of innovation diffusion and
its determinants.

Eventually, my time spent as a PhD student has been marked by rising China-US tensions
around technological leadership, giving way to many discussions, often missing empirical
foundations. I had the feeling that patenting could help bring a pragmatic approach to the
question. In Verluise and Bergeaud (2022)3, we draw on recent development in Artificial

1Verluise, Cyril and Cristelli, Gabriele and Higham, Kyle and de Rassenfosse, Gaétan, “The Missing 15 Percent
of Patent Citations” (2022).

2Bergeaud, Antonin and Verluise, Cyril. “What Do we Learn from One Century of Innovation in Europe and
the US?” (2022).

3Verluise, Cyril and Bergeaud, Antonin, “The Rise of China’s Technological Power: the Perspective from Frontier
Technologies” (2022).

https://zenodo.org/record/4391095
https://github.com/cverluise/PatCit
https://github.com/cverluise/patentcity
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PG6THV


Intelligence in the field of “automated patent landscaping” to accurately delineate frontier
technologies from the worldwide corpus of patents. Tracking half a dozen technologies which
are deemed to be the key technologies of the next decade, we observe that China’s contribution
to the patenting of frontier technologies has been rapidly rising over the last decade, sometimes
competing with the US in terms of the quantity of patents published in these frontier
technologies. However, China still exhibits the stigma of a catching-up economy character-
ized by a stock of lower quality patents and a lower share of patents generated by domestic
inventors. The underlying code and dataset are to be open sourced and made publicly available.

Overall, to me, the contribution I might be the most excited about is the release of new datasets
and their generating processes. I hope that these assets will be leveraged and extended by the
community to open new research avenues.
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Chapter 1

The Missing 15 Percent of Patent
Citations

Cyril Verluise. Collège de France & Paris School of Economics
Gabriele Cristelli. École Polytechnique Fédérale de Lausanne
Kyle Higham. Hitotsubashi University.
Gaétan de Rassenfosse. École Polytechnique Fédérale de Lausanne

This version: January 2022

Abstract

Patent citations are one of the most commonly-used metrics in the innovation literature.
Leading uses of patent-to-patent citations are associated with the quantification of inventions’
quality and the measurement of knowledge flows. Due to their widespread availability, scholars
have exploited citations listed on the front-page of patent documents. Citations appearing in
the full-text of patent documents have been neglected. We apply modern machine learning
methods to extract these citations from the text of USPTO patent documents. Overall, we
are able to recover an additional 15 percent of patent citations that could not be found using
only front-page data. We show that "in-text" citations bring a different type of information
compared to front-page citations. They exhibit higher text-similarity to the citing patents and
alter the ranking of patent importance. The dataset is available at patcit.io (CC-BY-4).

JEL classification: C81, O30
Keywords: Citation, Patent, Open data
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1.1 Introduction

Patent documents represent an invaluable source of information about technological progress.
They provide a detailed account of inventive activities, sometimes as early as the mid-nineteenth
century (Sokoloff, 1988; Moser and Nicholas, 2004; Akcigit et al., 2017a; Andrews, 2020a).
Researchers across all fields of sciences and engineering exploit them as a knowledge repository as
well as for technology foresight and competitive intelligence analysis, among other applications
(Porter et al., 2008; Benson and Magee, 2015; Candia et al., 2019). Researchers in the social
sciences exploit them to study various facets of the innovation process (Jaffe and de Rassenfosse,
2017).

Early work exploiting patent documents focused on easily accessible metadata, including cita-
tions and technology classes. Citation data are a particularly popular object of study; a Google
Scholar search with the keyword “patent citation” returns about 15,000 results. Use cases are
too numerous to list but cover the measurement of invention ‘quality,’ the placement of inven-
tions in the broader invention network, and the tracking of knowledge flows. More recently, the
field has been moving towards exploiting the full text of patent documents. Applications cover,
e.g., keyword extraction, topic identification, and invention similarity (Kaplan and Vakili, 2015;
Younge and Kuhn, 2016; Arts et al., 2018; Righi and Simcoe, 2019)

In this work, we focus on one aspect of full-text data that has eluded the attention of scholars,
namely in-text citations to patent documents. Patent offices—and, therefore, the major patent
datasets—provide structured data on so-called front-page citations. These citations are made
for procedural reasons; they list prior art that is relevant for assessing the patentability of the
claimed invention. They originate from applicants (or their attorneys and inventors), examiners,
and third parties.1 They may originate directly at the time of filing, during the substantive
examination before grant as well as after grant in case of opposition, re-examination, revocation,
etc. By their nature, front-page citations are thus conceptually different from citations typically
found in scientific papers (Meyer, 2000).

By contrast, in-text patent citations appear in the patent text itself. They are made to fulfil
enablement requirements; to make arguments for novelty and non-obviousness; and to make
arguments for usefulness. As these justifications for adding in-text citations do not perfectly
overlap with those that drive the generation of front-page citations, in-text citations contain
truly novel information over and above that reflected in front-page citations.

Scholars have recently extracted in-text citations to the scientific literature, that is, patent-to-
article citations (Bryan et al., 2020; Marx and Fuegi, 2020; Verluise and de Rassenfosse, 2020).
Given the importance of citation data, the lack of treatment of in-text patent-to-patent citations
is an obvious gap. Such data are likely to be particularly important for specific applications,

1An example of citations by third parties is Section 801 of the Patent Cooperation Treaty (Administrative
Instructions), which allows third parties to make observations referring to relevant prior art.



such as for the measurement of knowledge flows. Indeed, inventors often contribute to the
drafting of the text, and the references they mention are likely to be a better way of capturing
knowledge flows than front-page references. Despite our strong suspicion that these data might
be relevant for some applications, little research exists to confirm it—precisely because data
were not readily available until now. It is thus critical to process these data and make them
widely accessible.

We have extracted patent citations from the full-text of 16,781,144 publications filed in the U.S.
Patent and Trademark Office (USPTO) from 1790 to 2018. About 95 percent of these publica-
tions are granted patents or patent applications.2 For the sake of simplicity, unless specified, we
use the term ‘patent’ to designate all publications in the dataset in the rest of the paper. We
relied on "Grobid", an open-source machine learning library leveraging Natural Language Pro-
cessing (NLP) to extract and parse citations.3 We performed an extensive validation exercises,
revealing high performance: our extraction task in particular achieves a satisfying 97 percent
precision and 82 percent recall (f1-score nearing 90 percent). Overall, we extracted 63,854,733
in-text patent citations, suggesting that in-text patent citations are by no means a marginal
phenomenon. A total of 49,409,629 (77.5 %) of them were matched to a standard publication
number ensuring interoperability with other patent datasets. The data collection effort is part
of PatCit, an open source project that aims at building a comprehensive patent citation dataset.

We have performed an in-depth quantitative analysis of the difference between in-text and front-
page citations. We discovered three noteworthy elements. First, by-and-large, in-text citations
do not overlap with front-page citations. Overall, we are able to identify an additional 15
percent more citations than one would get using front-page data alone (that is, these citations
are not listed on the front page). This figure jumps to 100 percent before 1947, meaning that our
data will be an invaluable help to researchers interested in the pre-WWII period. Second, the
data generation process of in-text citations intrinsically differs from that of front-page citations
and, we believe, is particularly suited to capture knowledge flows. This intuition is reinforced
by measures of textual similarity; we find that in-text citations are more similar to the focal
citing patent than front-page citations. Third, we find surprisingly low correlation between the
front-page forward citation count and the in-text forward citation count. Scholars have used
such counts to measure invention importance (Trajtenberg, 1990a; Lanjouw and Schankerman,
2004; Hall et al., 2005). The low correlation suggests that in-text citations provide valuable
information to assess invention importance.

The dataset is publicly available on Google Cloud Big Query and Zenodo. Additional technical
documentation and usage guides are available on the project repository and the documentation
website.4 In addition to the final output, we also release the validation data and the code with

2The remaining 5 percent is composed of design patents, plant patents, reissued patents and statutory invention
registration (SIR).

3Grobid (2008-2020) https://github.com/kermitt2/grobid
4See http://patcit.io for the project documentation.

https://github.com/kermitt2/grobid
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a view of ensuring replicability and follow-on improvements by the community.5

The remainder of the document is organized as follows. Section 1.2 discusses the nature of in-
text citations. Section 1.3 sets forth the processing pipeline and provides technical details about
the methods. Section 1.4 describes our validation procedure and reports performance measures
for various critical steps of the data pipeline. Section 1.5 offers a quantitative overview of in-text
citation data and compares them with front-page citations. Section 1.6 concludes.

1.2 The epistemology of in-text citations

This section describes the characteristics of in-text patent citations, with a particular focus
on how they differ from ‘traditional’ patent citations reported on the front page of patent
documents.

There are three patentability requirements enshrined in U.S. patent law that give rise to in-text
citations to all types of prior art: to fulfil enablement requirements; to make arguments for
novelty and non-obviousness; and to make arguments for usefulness. As these justifications for
adding in-text citations do not perfectly overlap with those that generate front page citations,
in-text citations contain truly novel information over and above that reflected in front-page
citations. Further, we suggest that this novel information is likely to be associated with inventor
input into the drafting process and, therefore, knowledge flows (Bryan et al., 2020). For a similar
reason, we argue that in-text patent citations provide a valuable signal of patent importance.

1.2.1 A legal perspective on in-text patent citations

The justifications above relate to specific legal obligations that an applicant must fulfil in order
for their application to be deemed patentable. While novelty and non-obviousness are usually
judged by the examiner using direct comparison to the prior art, enablement and usefulness
are also necessary for patentability and are primarily argued by the applicant in the detailed
description of the patent application. Appendix 1.9 gives real examples of citations in each of
these contexts.

Enablement is necessary due to 35 U.S Code § 112, which explicitly states:

“The specification shall contain a written description of the invention, and of the
manner and process of making and using it, in such full, clear, concise, and exact
terms as to enable any person skilled in the art to which it pertains, or with which
it is most nearly connected, to make and use the same, and shall set forth the best
mode contemplated by the inventor or joint inventor of carrying out the invention.”

5https://github.com/cverluise/PatCit/tree/0.3.0

https://github.com/cverluise/PatCit/tree/0.3.0


The enablement requirement is core to the modern conception of a government-issued patent.
It ensures that when a patent falls into the public domain, others can (in theory) replicate and
use the invention after reading the information in the patent description. Prior art citations
may be incorporated by reference where appropriate and can make this description much more
succinct; if the construction or use of an invention relies on previously patented or published
information, the applicant may reference this in the text of the patent specification.6 These
kinds of citations are not necessarily material to the invention’s patentability and, when this is
the case, not required to be disclosed by the applicant via an information disclosure statement.
As such, these ‘enablement’ citations are not necessarily duplicated on the front page of the
patent document. This is particularly true of citations accompanying specific examples that
describe how the invention may be used in practice (‘best modes’), which may be complementary
(and not necessarily similar) to the invention described and may even be hypothetical (Freilich,
2019).

The novelty and non-obviousness requirements depend crucially on prior art.7 For the most
part, they are argued for implicitly through Information Disclosure Statements submitted by
the applicant throughout the application and patent prosecution processes—these are the cita-
tions that appear on the front page of a patent.8 However, the applicant can also make these
arguments explicitly in the patent text by pointing out shortcomings of, or distinctions from,
the most pertinent prior art, accompanied by citations to this art. As such, one may expect that
citations intended to bolster an argument for novelty or non-obviousness would be duplicated
on the front page.

Usefulness, perhaps the most subjective requirement, is described in 35 U.S. Code § 101. It
requires the described invention to be ‘new and useful’ to be patentable. The first part of this
clause is covered by the novelty and non-obviousness requirements described above. However,
the second (usually referred to as the ‘utility’ requirement) requires the invention to be useful
to the public as described and, as such, may overlap with enablement requirements. The word
‘useful’ is particularly open to interpretation, but generally requires the patented invention to
work, and is something that people may want or need (Machin, 1999). In the former case,
while there is no burden on the applicant to prove that the invention works (Cotropia, 2009),
citations may be added to allay doubts that, for example, a claimed function of the invention
is physically possible. The latter is unlikely to be questioned by an examiner (Machin, 1999).

1.2.2 In-text patent citations as valuable paper trails of knowledge flows

Applicants add in-text citations (to both patents and other bibliographic sources) on their
patents for several reasons, necessitated by patentability requirements laid out in U.S. law, as

637 CFR 1.57
735 USC 102; 35 USC 103
837 CFR 1.56



discussed above. Some of these reasons overlap with those that require applicants to submit
Information Disclosure Statements, the prior art listed on which often reach the front page of
a granted patent. However, some prior art, and particularly those items deemed necessary to
meet enablement or usefulness requirements, do not need to be submitted to the patent office
in the form of an Information Disclosure Statement because they do not directly limit the scope
of the claims in the patent application. Further, examiners do not need specific pieces of the
prior art to justify a rejection under the enablement or usefulness requirements.9 Therefore, the
front-page will not contain in-text citations added for these purposes (unless, of course, they
are also relevant for the assessment of novelty and non-obviousness).10

Due to their resemblance to citations in academic articles, it is tempting to assume that in-text
citations are more likely than front-page citations to have been added by the people directly
involved in the discovery process, namely the inventors. We suggest that this is probably true,
for two reasons. First, the in-text citations that are duplicated on the front page, as prior
art material to patentability, are likely the most relevant pieces of prior art against which the
invention needs to be judged as novel and non-obvious. The fact that these citations are also in
the patent description would imply that they either fulfilled multiple requirements, or were so
technologically close to the citing patent that applicants need to make explicit arguments for
novelty in the description with reference to specific items in the prior art (see Appendix 1.9).
In either case, the inventor was likely aware of this prior art during the invention process.

Second, those citations that are not duplicated on the front page are most likely included
to address the enablement or usefulness requirements. While utility is often assumed, and
rejections based on lack of utility are rare for most technology types (providing little incentive
to add citations; Chien and Wu, 2018), the enablement requirement states that a ‘person skilled
in the art’ should be able to make and use the invention, and applicants add in-text citations
to assist these hypothetical persons.11 As such, this information was almost certainly necessary
during the invention process, and the inventors were, therefore, aware of it. Believing otherwise
would come with the implication that it is the attorneys who are writing instructions for those
‘skilled in the art’ and, hence, are at least as skilled as these readers.

Both of the arguments above point towards inventors having more input into selecting in-text
citations than they do for front-page citations. For these reasons, we suggest that in-text
citations provide a promising measure of knowledge flow.

1.2.3 In-text patent citations as valuable signals of patent importance

In addition to their utility for capturing noisy signals of knowledge flows, researchers have also
used front-page forward citations for decades as indicators of technological impact (Carpenter et

9Manual of Patent Examining Procedure, Section 2107.02; Manual of Patent Examining Procedure, Section 2164
10Manual of Patent Examining Procedure, Section 2120
1135 USC 112



al., 1981; Albert et al., 1991). Even if a particular cited patent was not a real knowledge input,
the fact that it appears on the front page means that it is likely to be in the same technological
space as the citing patent. As such, a patent receiving many front-page citations is either: useful
and frequently reused information for the production of new inventions; in a dense technological
space against which many new technologies happen to abut, or; a combination of these. This
interpretation of front-page forward citation counts is a consequence of the legal purpose of
front-page citations; namely, to delineate the prior art material to the patentability of the
citing patent. However, this is not the sole purpose of in-text citations.

In-text citation counts, as described above, also serve to fulfill enablement and utility require-
ments. Applicants sometimes do so by referring to their own patents; for example, firms pro-
ducing consumer goods may have patents on multiple complementary inventions that, while not
necessarily technologically similar, come together in the final product and are cited to demon-
strate how the invention is used in practice. In-text citations are also more likely to come from
inventors themselves, perhaps independently from the motives for citing. For these reasons,
the interpretation of a patent accumulating a large number of in-text forward citations is more
complicated than for front-page citations.

On the one hand, the technologically similar inventions cited in-text are those from which the
applicant of the citing patent or application has had to provide additional distinction, and
therefore are likely to be those most likely to be justification for rejection. On the other hand,
the technologically complementary inventions cited in-text are likely to be more generalizable
technologies, as they are not technologically close enough to the citing patent to be considered
material to patentability. Sometimes this relationship is made explicit, as indicated in U.S.
patent 8,524,730 (emphasis added):

“More concretely, examples of the other active ingredients that can be combined with
a compound of the invention as different or the same pharmaceutical compositions
are shown below, which, however, do not restrict the invention.”

Patents cited in this fashion are not in the same technological space as the citing patent and are
cited for their compatibility with other inventions. A large number of these kinds of citations
may, therefore, indicate generality outside of the technical domain of the cited invention.

These reasons for making in-text citations color our understanding of how exactly a large number
of forward in-text citations relate to the intrinsic properties of the cited patent or invention.
However, we know that these citations are more likely to originate with the inventors themselves,
rather than the attorneys or examiners. This scenario is an interesting one from the point of
view of interpretation. The number of reasons for citing a patent in-text are more numerous
than those made on the front page, but the resulting citations (often accompanied by context)
are more thought-out and meaningful. As an analogy, if front-page citations were a single
radio station plagued by significant and persistent static, in-text citations result from numerous



stations broadcasting loud and clear the same frequency, to the point where it is difficult to
make out what any individual station is saying. However, some may prefer this to static. The
disentangling of these frequencies is undoubtedly possible; with both data and code publicly
available, future research can build on this work to add the context to in-text citations and,
ultimately, better understand what a highly-cited patent represents in this setting.

1.3 Methods

In this section, we describe the data sources and the different steps of the processing pipeline.
We want to provide extensive insights into our technical choices in order to stimulate and enable
future extensions or improvements.12

1.3.1 Data

The processing pipeline starts with the full-text of 16,781,144 patent documents filed at the
U.S. Patent and Trademark Office (USPTO) since 1790.13 We extracted the full-text data from
the IFI CLAIMS dataset, made available by Google Patents as part of its public datasets.14

The text we are considering is the specification of the patent. The specification is a written
description of the invention and of the manner and process of making and using the invention.
It also includes information about related applications and government interest statements
(de Rassenfosse et al., 2019a). It does not include the patent’s claims or the information on the
front-page.

The starting point is a long chain of characters without any structure and indication about
which characters might refer to a patent citation.

1.3.2 Extraction task

The first step involves identifying the relevant strings of characters referring to a patent citation
in the full text. An early attempt to do so dates back to Galibert et al. (2010), who combined a
set of regular expressions to identify the cited patent number itself (e.g., country codes followed
by a series of digits) based on the neighbouring text (e.g. “herein described by”). A similar
approach was implemented by Berkes (2018a) for U.S. patents published before 1947. Although
intuitive, these approaches lead to moderately satisfying results. Galibert et al. (2010) report
a precision of 64.4 percent, a recall of 61 percent and a f1-score of 62.9 percent while Berkes
(2018a) does not report performance metrics. The fundamental reason behind these low scores

12Readers who are not specifically versed into technical considerations can skip this section without much harm
to their understanding of the nature of the data.

13The first extracted citation is in 1846.
14https://console.cloud.google.com/marketplace/partners/patents-public-data
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is that language is highly variational and there are many ways of citing a patent. On this point,
Adams (2010) warned the community about the complexity of the extraction task. Using a
random sample of USPTO patents, he found an “alarming” (p. 26) degree of variation in the
form of in-text patent citations. In this context, any attempt to use a list of predefined rules is
likely to have mixed results and, above all, to lack generalisation.

In order to overcome this limitation, NLP researchers have developed statistical models that can
learn to find and tag entities, such as cited patents, using a training set of annotated documents,
where a researcher has labeled the presence (or not) of the entities of interest. Although an
in-depth presentation of the related Named Entity Recognition (NER) literature is out of the
scope of this paper, we summarize the general working principles of these models below.15

The key is to see a text as two sequences: a sequence of tokens and a corresponding sequence of
latent labels (e.g. “PATCIT” for patent citations versus “O” for other). The task is to predict
the sequence of labels. The algorithm is trained on an annotated set of documents, that is, a
set of documents for which we know both the sequence of tokens and the sequence of labels.
The probability of each token to belong to a given label is a recursive function of the token
itself and its features (digits, capital letters, etc), the neighbouring tokens (its context) and the
neighbouring labels. The overall goal of the algorithm is to predict rightly the full sequence of
latent labels for a given sequence of tokens. If a token (or a sequence of tokens) is unknown
or deviates from the learning examples, the algorithm can still leverage the other attributes
to decide which sequence of labels is the most probable for the whole sentence, leading to a
considerable generalization improvement.

For example, let us assume that the algorithm has been trained on a corpus of texts where cita-
tions come in the following form (with d denoting any digit): “described by patent d,ddd,ddd”
and where the corresponding sequence of labels is [O, O, O, PATCIT]. Let us further assume
that the algorithm is supplied a new text with a slightly different form of citation such as “de-
scribed by Pat 9,535,657”. Although the algorithm has never seen the token “Pat”, it has learnt
from the training data that the sequence of token “described by” frequently precedes a PATCIT
label by two tokens. Combined with the fact that the token “9,535,657” exhibits the features
frequently associated with a PATCIT (digits and commas), then the algorithm is expected to
override the absence of the “patent” token and still to predict the right sequence of labels, [O,
O, O, PATCIT].

The aforementioned limitations and improvement opportunities have been well identified by
the machine learning community in the second half of the 2000s. In particular, Lopez (2010)
developed the Grobid library in 2008 (and has been continuously improving it since then) with
the goal of overcoming the limitations of a “rule-based” approach using a statistical approach.
Grobid has now become an open source project leveraging modern NLP to efficiently struc-

15See Li et al. (2020) for a recent survey of this literature.



ture scientific documents in general, but retains a specific focus on patents. It includes models
trained at extracting and structuring bibliographical references (scientific articles, books, pro-
ceedings, etc.) and patents from full-text documents. The algorithmic backbone of Grobid is
the Conditional Random Fields (CRF) model. This model belongs to the family of sequence
labeling models described above and was first introduced in 2001 (Lafferty et al., 2001). The
CRF model has been widely used in various fields and applications.16

Grobid’s patent citations’ extraction model was originally trained on 200 annotated full-text
patents.17 This training set included 62 percent of EPO patents, 19 percent of WIPO patents
and the remaining 19 percent of USPTO patents. As for the rest of Grobid models, the patent
extraction model is a CRF model. The specific features entering the CRF model to support
patent citation detection include the relative position of the current token in the document, the
matching of a common country code (e.g., US, EP, WO, etc) and the matching of a common
kind code (e.g., A1, A2, B1, B2, etc).

The output of the extraction tasks is a set of text spans that were tagged as patent citations (e.g.,
“United States Patent 9,535,657”). The information extracted at this stage is not structured
and, therefore, improper for researchers.

1.3.3 Parsing task

The next step involves parsing the extracted patent citation strings. We take the raw span of the
extracted citation as an input, with the goal of obtaining the following normalized attributes:
the country code of the patent authority, the patent number and the type of the patent. This
task is challenging due to the many forms in which patent citations occur in the text. Typically,
the patent authority can appear as a code or a name (e.g “US Patent 9,535,657” or “United
States Patent 9,535,657”) either immediately next to the patent number or relatively far from
it (e.g., “US Patent number 9,535,657” or “US Patents 9,911,050, 9,607,328, 9,535,657”).

Lopez (2010) proposes an efficient solution for tackling this task. The fundamental idea is that
both the sets of possible inputs and outputs for each patent attribute are finite (e.g., the list of
patent organisation names and the list of their codes respectively). In addition, each element of
the input vocabulary should be mapped with a unique element of the output vocabulary (e.g.
“United States” with “US” or “European Patent Office” with “EP”). In the end, for any given
patent attribute, the parsing operation can be thought of as a translation operation between
two languages with a finite vocabulary. If this still seems a bit abstract, the reader can simply
consider that the aforementioned task consists in regular expression matching followed by string
rewriting.18 This task perfectly fits the usage of Finite State Transducers (FST) which appeared

16See Sutton and McCallum (2006) for a survey.
17The training set was enriched since that time and now includes 270 patents, including 51 percent of EPO

patents, 33 percent of WIPO patents and the remaining 26 percent of USPTO patents.
18Let us assume that we are interested in the organisation attribute and that we have extracted the following

span “United States Patent 9,535,657”. This span would trigger a match for “United States” which would then



early in the history of automated translation.19 Importantly, FSTs have been developed with
computational efficiency in mind in the early ages of computer science, making them highly
efficient in todays’ context.

The output of this task is a well-structured set of attributes describing the cited patent.

1.3.4 Consolidation task

The final task consists in matching each extracted patent citation to a unique and consolidated
identifier, in order to connect each cited patent document to commonly used patent dataset. For
patents, the identifier common to most (if not all) patent datasets is the DOCDB publication
number.20 On this point, note that we depart from Grobid which relies on the European Patent
Office (EPO) search API21 to perform the matching process and uses the EPO document number
as its target and consolidation device.

Unfortunately, in a large majority of cases, in-text patent citations do not report the kind code
of a patent, or report the original patent number rather than the version used in the DOCDB
publication number, making it impossible to assemble the DOCDB publication number using
the parsed attributes only. In order to overcome this limitation, we have relied on the Google
Patents Linking Application Programming Interface (API).22 Taking various kinds of inputs,
such as the patent office code, the patent number and kind code, the API returns the associated
DOCDB publication number. At a high level, the internal mechanism of this service is the
following.23 First, a large number of variations of each publication number was generated.
For each variation, the original patent office and DOCDB formatted versions were indexed.
Variations include adding and removing 0 padding, two and four digit year dates inside of
patent number, Japanese emperor year variants and different combinations of country code,
patent number and kind code. Altogether, these variations constitute a large lookup table
linking many variations of a publication number to its DOCDB formatted version. Then, at
the time of lookup, punctuation is stripped and the country code, number and kind code are
searched for before being used to look-up for matches in the large variation table. Note that
there are two distinct services, one for applications and one for patents.24 We decide which one
to call based on the status attribute parsed by Grobid which can take four values: “application”,
“provisional”, “patent” and “reissued”. The first two trigger the application service, while the
last two trigger the patent service.

be rewritten as “US”.
19See Roche and Schabes (1997) for an in-depth review of Finite State Transducers.
20For the sake of simplicity, we use the “publication number” terminology for both the publication number (for

published patents) and the application number (for patent applications).
21http://v3.espacenet.com/publicationDetails/biblio
22https://patents.google.com/api/match
23We thank Ian Wetherbee from Google Patents for this explanation.
24Applications: https://patents.google.com/api/match?appnum

Patents: https://patents.google.com/api/match?pubnum
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Using the unique publication number returned by the Google Patents Linking API we were
able to connect each cited document with richer information from patent datasets generally
used by researchers (e.g., PATSTAT, PatentsView, IFI CLAIMS, etc.). We enriched each cited
patent with the following attributes: publication date, application identifier, patent publication
identifier, INPADOC and DOCDB family identifiers.

1.3.5 Pipeline

Let us illustrate the process using an example. Consider the following excerpt from the descrip-
tion of US-9606907-B2, which cites two U.S. patents:

“Examples of circuits which can serve as the control circuit . . . are described in more
detail by U.S. Pat. Nos. 7,289,386 and 7,532,537, each of which is incorporated in
its entirety by reference herein.”

After the Grobid processing, we know that the patent US-9606907-B2 cites two patents from the
U.S. patent office (“US” patent authority code) and that their original numbers are 7,289,386
and 7,532,537. Using the Google Patents Linking API, we find that the two patent citations
embedded in the text can be uniquely identified by their publication numbers, namely US-
7532537-B2 and US-7289386-B2.

The above pipeline was deployed remotely on a large-size compute engine from Amazon Web
Services.25 In order to increase speed, we used multi-processing, a technique consisting in
running multiple processes in parallel at the same time. This technique is especially useful for
‘cpu bound’ rather than ‘io bound’ operations, that is when computation is the main limiting
factor, not internal communication. Processing documents at an average pace of 400,000 to
500,000 per day, this operation took us approximately one month for a total cost of about
120 USD.26 Overall, from the 16,781,144 patent documents that we processed, we were able to
extract 63,854,733 in-text patent citations. These citations point to 13,611,323 unique patent
documents. We matched 49,409,629 of the extracted in-text cited documents with a publication
number.

1.4 Technical validation

In order to assess the quality of the citation dataset, we undertook a thorough validation exercise
of the data and the extraction, parsing and matching tasks. To do so, we relied on Prodigy,

25We used a t2.xlarge (4 cores and 16Gb of Ram) located in the “USA East Ohio” computing zone.
26Note that we simultaneously extracted in-text Non Patent Literature citations (scientific articles, books, pro-

ceedings, etc.) and tried to match them with Crossref at runtime. To do so, we used biblio-glutton, a high
performance bibliographic reference matching service, and an ElasticSearch index hosted on a separate en-
gine. It appeared that the major processing speed limitation came from ElasticSearch queries. Processing only
in-text patent citations would certainly take significantly less time and resources.



a scriptable annotation tool.27 Lopez (2010) reports performance metrics for all these tasks,
however the set of documents we are considering partly differs from the corpus he used. In
particular, a significant part of the patents in our corpus is much older than any document
considered for Grobid training and evaluation. We also carried out detailed error analyses as a
way to support future improvement efforts.

1.4.1 Data consistency

USPTO patent documents’ format and the quality of the scanned document (for older patents)
has changed throughout the years. Before 1971, patents were largely unstructured with no
clear delimitation between the metadata and the specification text itself (see Figure 1.1). The
modern patent format was introduced in 1971 and progressively replaced the old format before
becoming the unique format after 1976. This format is semi-structured and clearly distinguishes
between the metadata sections and the specification section inter alia (see Figure 1.2). These
specificities of the source data have some notable implications on our output data.

First, the text of patents published in the old format includes the header of the patent. The
header summarizes the main attributes of the patent, including its technological classes, title
and most importantly its number. In this case, the extraction algorithm is likely to extract a
patent citation which does not correspond to the kind of object we are looking for. Fortunately,
this specific pitfall is relatively easy to spot as the citation appears very early in the text.
Figure 1.3 reports the distribution of the rank of the first character of the extracted citations
before and after 1976. We observe a clear excess mass between 0 and 50 characters before 1976.
Building on this observation, we focused on the corpus of patents published before 1971 and
randomly drew 50 citations starting before character 50. Confirming our doubts, we found that
88 percent were self references, 8 percent were technological classes and 4 percent were dates.
In this context, we chose to flag all citations detected in a patent published before 1976 and
starting before character 50 to make it easy to exclude them from analysis.

Second, in the old format, what we now call ‘front-page citations’ were printed after the patent
specification, and these are also sometimes mistakenly included in our source data as part of the
full-text of the patent. Since all patents have a different number of characters, looking at the
distribution of citations by starting character does not make sense. However, we can still look at
the relative place of the detected citations. Figure 1.4 shows their distribution as a function of
their relative place (expressed in percentile) in the full text. Comparing the distribution before
and after 1976 reveals a sizable excess mass for the pre-1976 distribution in the last four percent
of the full-text characters. Additionally, looking at a random sample of 100 citations extracted
from patents published before 1976 and occurring in the last four percent of the characters, we
find that 99 percent belong to the ‘front page’ citations section. Hence, for patents published

27Prodigy (2018-2020) https://prodi.gy/.
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before 1976, we chose to flag all citations detected in the last 4 percent of the full-text and
encourage the user to exclude them from their analysis.

Third, during the transition period between the old and modern formats (approximately
throughout 1971–1975) there were two patent formats in use, complicating the delineation of
the specification text section during this time period. As a result, we observed that ‘full-texts’
from this time, mistakenly include the front-page of patents that are in the modern format.
This can lead to the incidental extraction of ‘in-text’ citations that are actually front-matter,
including front-page citations and references to the patent itself (including priority filings).
Unfortunately, there is no straightforward solution to this problem. We encourage data users
to systematically ignore patents that are both in text and front page citations during this time
span.

All figures reported above and below exclude flagged patent citations as they are most likely
not to correspond to real in-text patent citations (unless explicitly specified).

1.4.2 Extraction task

Lopez (2010) reports high performance metrics for the extraction task. Using cross-validation, a
technique consisting in training the model ten times using 80 percent of the sample and testing
it on the remaining 20 percent, the author reports the following average performance metrics:
94.66 percent of precision, 96.16 percent of recall and a f1-score of 95.4 percent. As far as
we know, these are the best performances reported in the literature to date. Although this
motivated our choice to use Grobid, we are fully aware that our dataset partly differs from the
Grobid training set and performance could thus be affected.

In order to evaluate the quality of the extraction in our specific case, we randomly sampled 160
U.S. patents and annotated them by hand. As previously discussed, the citation of a patent can
come in various ways. For instance, the country of the patent office can be reported as a code
preceding the patent number, as a name anywhere in the surrounding of the patent number, etc.
In this context, the only stable element of a patent citation is the patent number itself. That
is why Grobid returns the first and the last character of the patent number of detected patent
citations. Hence, our validation exercise consisted in comparing the spans detected by Grobid
as a patent number and the spans labelled by humans as a patent number. Each patent was
annotated by a single human annotator using the platform featured by Figure 1.5a.28 The body
of the text is displayed together with annotations from Grobid predictions and the annotator
goes through the text to correct missing and wrong annotations. The tagged spans are saved
upon exit.

As depicted by Figure 1.6, the validation sample and the universe of citing patents display very
similar distributions by publication year.

28“Human annotators” are not undergraduate RAs but coauthors of this paper.



From the 160 random U.S. patents in the validation set, human annotators found that 103 (64.4
percent) patents cited at least one patent for a total of 470 in-text patent citations. Table 1.3
reports the extraction performance that we obtained together with the Galibert et al. (2010)
and Galibert et al. (2010) benchmarks. Comparing ‘gold’ annotations from human annotators
with the predictions obtained from Grobid, we find that Grobid exhibits a satisfying 97 percent
precision and 82 percent recall (f1-score nearing 90 percent). Importantly, these results largely
outperform Galibert et al. (2010), who used regular expressions for the same patent citations
extraction. They reported a precision of 64.4 percent and a recall of 61 percent. This result
clearly confirms that a statistical approach to in-text citation extraction is much more relevant
than a regular expression approach. Interestingly, the performance obtained by Grobid on our
extended corpus is very similar to the benchmark reported by Lopez (2010) regarding precision
(97.44% vs 97%) but lower in terms of recall (97.74% vs. 82%). This difference means that,
applied to our extended corpus, Grobid is as reliable as reported in Lopez (2010) when it has
detected a patent citation. However, it misses patent citations more often in our extended
corpus due to older forms of citations appearing in early-twentieth century patents.

The error analysis suggests that both false positives and false negatives exhibit patterns that
could be specifically addressed by future improvements of the Grobid training set. Table 1.4
provides examples for each category of errors that we were able to identify. Starting with false
negatives, that is patent citations that were not detected by Grobid, we find three categories
of context generating this type of errors: 1) the context does not clearly mention “patent” or
“application” but rather implicitly suggests a patent citation; 2) the patent is cited in the form
“inventor (date) <PATCIT>” and 3) the patent is cited as “Serial Number <PATCIT>”. While
category 1) could have been expected and would certainly be hard to correct without generating
a large number of false positives, categories 2) and 3) might certainly be partly addressed by
augmenting the training dataset with older patents that tend to adopt this form of citations
more often. Now, looking at false positives, that is text spans that were wrongly identified by
Grobid as patent citations, we can find three categories of errors as well: 1) technological classes
reported as “dd/ddd”, 2) date and 3) docket number. Note that the categories 2 and 3 have
only one occurrence each.

1.4.3 Parsing task

Grobid FST was built manually based on 1,500 patent citation examples. It was then evaluated
on 250 references which were unseen before. Lopez (2010) reports a 97.2 percent accuracy for
the full parsing task (patent organisation code, number and kind code). Once again, we thought
that it was important to confront those results with our specific dataset.

In order to validate the quality of the parsing, we randomly sampled 300 extracted citations
with their parsed attributes. As already discussed, the attributes can be relatively far from the
patent number that serves as the citation anchor. Hence, it was necessary to provide the human
annotators with a contextualized citation. In practice, using the patent number reported by



Grobid as an anchor, we extracted a chunk of text containing a window of ten tokens on the
right and left of the detected patent. This text and the tagged patent were then displayed to
the annotator together with the Grobid parsed attribute as illustrated by Figure 1.5b. The
annotator would then accept or reject the attribute depending on what he actually found in the
text. Each example was validated by a single annotator whose decisions were saved upon exit.

Lopez (2010) reports an overall 97.2 percent accuracy. Since the attributes can be used in-
dependently, we believe that a detailed understanding of the performance and errors for each
attribute is also valuable for the community. Hence, we performed three distinct validation
exercises, one for each attribute. Our results are summarized in Table 1.6.

Considering the parsing of the patent organisation, we first checked for sample representativity.
Table 1.5 reports the distribution of the patent organisations in the validation sample. It
appears that two-thirds of the citations in the sample were mapped to the U.S. patent office.
This result is very much in line with the results that we report on the full dataset (see Section
1.5). Similarly, the patent organisations in the remaining third of the validation sample are also
the most represented organisations at scale, including the Japanese Patent Office, the World
Intellectual Property Organisation, the European Patent Office and the German Patent Office
inter alia. On the 300 examples that we validated, we found only five errors, leading to a 98.3
percent accuracy score. Errors spread over five distinct patent offices and we do not observe
any systematic confusion between patent offices, which suggest that errors generate noise rather
than a systematic bias.29

When it comes to the parsing of the patent number, there is no specific way of checking sample
representativeness. Overall, on the 300 examples that we validated, we found thirteen errors,
leading to a 95.7 percent accuracy score. Among the errors, we find two recurring cases. First,
patent citations in their Paris Cooperation Treaty (PCT) form (e.g., PCT/EP2005/008238)
generate patent numbers mixing part of the letters in the prefix and the patent number itself
(e.g., PTEP2005008238). Second, as already reported in Lopez (2010), we found that Grobid
removes the first letter of the patent number of Japanese applications with date prior to 2000
(e.g., H08-193210 where H stands for the Heisei era that spanned from 1989 to 2019). However,
this indication is key to uniquely identify the application. This letter refers to the era and acts
as the time marker. Note that this specific issue is partly fixed by the Google Patent matching
API as explained in Section 1.3.

Lastly, we validated the parsing of the so-called kind code, that is the code indicating the
specific kind of document the citation refers to (granted patent, application, reissue, design,
etc.). Over the 502 random examples, we obtain an accuracy of 97.6 percent. Note, however,
that this measure includes a large proportion of null results as the kind code is in fact rarely
reported in the text. In order to further characterize the quality of the parsing, we drew a

29The five offices are: SA (Saudi Arabia), AL (Albania), CH (Switzerland), DE (Germany) and BE (Belgium).



sample of 50 citations where the parsed kind code was not null. We found 7 mistakes, meaning
a ‘conditional’ accuracy of 86 percent. Specifically, we found three groups of parsing errors:
errors due to unconventional formatting, OCR issues and Grobid mistakenly interpreting ‘Cl’
(class abbreviation) for the ‘C’ kind code. Importantly, every instance in standard form was
correctly parsed.

1.4.4 Matching task

The matching task involves associating the extracted attributes with a unique identifier, which
is the DOCDB publication number in our case. In order to validate this step of the process, we
randomly sampled 200 citations from our final dataset and we compared the concatenation of
the parsed attributes with the publication number provided by the Google Patent’s Linking API.
The annotator’s task was to answer the following questions: i) if there is a matched publication
number, is it the right one? ii) if there is no match, would it be possible to find one for a
human reasonably well trained in the task? A single human annotator fulfilled this validation
exercise. Based on that, we can assign each annotated example to a standard classification
outcome category and derive the associated performance metrics. Table 1.7 summarizes these
categories, their contents and the results from the validation exercise.

On the 200 examples in the validation sample, we find that 147 were matched and 53 remained
unmatched. Among the 147 matches, 137 were correct (True positives) and 10 were incorrect
(False positives) including six patents that could have been matched and four non-patent items
that should not have been matched. Among the 53 unmatched examples, we found that 17
could have been matched (False negatives) while no match could be found for the remaining 36
(True negatives). Overall, we find that the matching procedure achieves a 93.2 percent precision
and a 88.96 percent recall, leading to a 91.06 percent f1-score.

Next, we delved into the nature of the errors and non-matches. Tables 1.8 and 1.9 respectively
detail errors occurring during matching and cases classified as unmatchable by the human
annotator. We find that errors arising at this final step of the processing pipeline are partly
inherited from upstream steps. Among the ten incorrect matches, half are due to either a
parsing error or an extraction error. In the same way, among the thirty-six unmatched citations
that were judged unmatchable, 56 percent were directly related to either a parsing error or an
extraction error. Another group of errors seems to arise from the specificities of in-text citations
and their intrinsic ambiguities. This group includes citations of provisional patent applications
(which might well never appear in standard patent datasets) and partial citations that even a
human cannot match.30 This family of errors represent 41 percent of the thirty-six unmatchable
detected citations in our validation sample. Eventually, focusing on the unmatched citations

30A provisional application is a legal document filed at the patent office that establishes an early filing date, but
does not mature into an issued patent unless the applicant files a regular non-provisional patent application
within one year.



that a human can match reveals some blind spots of the Linking API. Over the seventeen
cases in this category, 52 percent are caused by missing zeros after the country code/year or a
Japanese publication number reporting the year after the serial number rather than before it
as is usually expected.

While the previous step can characterize the performance of the matching procedure with high
precision, due to the small size of the validation sample it cannot uncover rare irregularities
that might still be of sizable magnitude at large scale.

Considering the full dataset, Figure 1.7 show, the yearly number (1.7a) and share (1.7b) of
citing patents according to the matching status of the extracted in-text citations.31 Patents
with all in-text citations matched to a publication number represent 42.7 percent of the total,
whereas those with only some in-text citations matched represent 32.7 percent. Patents with no
in-text citations matched account for the remaining 24.6 percent. From 1947 to 1964, patents
with all in-text citations matched report an increasing yearly share, from around 40 percent
to almost 70 percent. For patents published between 1965 to 1975, the performance of our
matching procedure worsens, as the proportion of patents with only some citations matched or
no citation matched grows. From 1976 onwards, the share of patents with all citations matched
returns to be the largest (around 77 percent in 1976), although it progressively decreases for
patents published during the following years in our dataset.

These aggregate figures mask high variation depending on the patent office of the cited patent
documents. Table 1.10 reports the number of extracted in-text citations and the number and
relative share of matched citations for the top five patent offices in our dataset. More than
half of in-text citations are made to patents filed at the USPTO (about 58% of the total). We
are able to match 89 percent of them to their correct publication number. Patents filed at
the World Intellectual Patent organisation (WIPO) and the Japan Patent Office (JPO), with
respectively around 6.5 millions (10% of the total) and 5.7 millions (9% of the total) citations
are the second and third largest groups. We match almost 82 percent of the citations to WIPO
patent filings and around 77 percent to JPO patent filings. We obtain a similar match rate
(i.e., 73%) for citations to patents filed at the German Patent and Trade Mark Office (DPMA),
around 1.4 million of extracted citations. We obtain less satisfactory match rates for citations
to EPO patent filings. They are 2.2 millions and we match only 51 percent of them.

1.5 A first look into in-text citation data

Front-page patent citations have been extensively used over the past decades and multiple
studies have assessed their validity as indicators and discussed their pitfalls. As far as we can
ascertain, we are the first to introduce a consistent and validated dataset of in-text patent

31We consider only citing patents with at least one extracted in-text citation.



citations covering all U.S. patents. The purpose of this section is to provide an overview of the
characteristics of in-text citations as compared to ‘traditional’ front-page citations.

We find that in-text and front-page patent citations are two largely distinct sets. We also find
that in-text citations are semantically and technologically more similar to the citing patents
than their front-page counterparts. This result suggests that in-text patent citations might be a
better proxy for knowledge flows than front-page citations, as argued in Section 1.2. We report
that the forward citations counts obtained from the front page and the in-text citations are
only weakly correlated. Additionally, we find that in-text citations are more internationalized
and reveal a higher degree of self reliance. Table 1.11 summarizes the key figures of the section.
We use our dataset for in-text citations and the IFI CLAIMS dataset for front-page citations.
Unless specified, we consider all U.S. patents published from 1790 to 2018.

1.5.1 Order of magnitudes

From the 16,781,144 U.S. patents in our dataset, we find that 9,453,181 U.S. patents cite at least
one patent in the body of their description, corresponding to 56.3 percent of all U.S. patents.
Looking at the same set of patents, we observe that 11,923,551 patents (71.3% of the total)
exhibit at least one front-page patent citation. In-text citations exhibit high variability over
time. The share of U.S. patents citing at least one patent has increased from less than five
percent in the second half of the nineteenth century to 70 percent in the 2010s.

When we consider the total number of citations, we find that the number of in-text citations
reaches one-third of the front-page citations. We extracted 63,854,733 in-text patent citations
while the total number of front-page citations listed by U.S. patents during the same period
amounts to 203,557,2015. On average, the body of a patent contains 3.8 patent citations, 6.7
patent citations conditional on citing at least one patent. Once again, there is high variability
over time, from less than one in-text patent citation until the early 1960s to more than five since
the beginning of the twenty-first century (unconditional on having at least one in-text patent
citation).

1.5.2 Overlap between in-text and front-page patent citations

A natural question is how large is the overlap between in-text and front-page patent citations.
To answer it, we list all unique pairs of citing-cited patents, called ‘citations’ thereafter, for both
in-text and front-page citations. Comparing the two lists of citations yields three exclusive and
exhaustive sets: citations appearing in the text only, citations observed on the front page only,
and citations recorded in both.

We find that citing-cited patent pairs resulting from in-text and front page citations are largely
exclusive from one another. Figure 1.8 depicts the number of patent citations appearing in the
text only, on the front page only, and in both. There are 11,868,037 patent citations appearing



both in the text and on the front page, which represents only 5.79 percent of all front-page
citations and 24.2 percent of all in-text citations.32 Note also that, before 1947, front-page
patent citations did not exist: before that date, all patent-to-patent citations were available only
in-text. In the end, over the whole period, considering in-text patent citations adds 37,541,592
citations that are not found among front-page citations. Focusing only on front-page patent
citations leads to missing 15.34 percent of all patent citations. That is what we call the missing
15 percent of patent citations.

A potential explanation of the missing 15 percent of patent citations could be patents cited as a
“Translation of Patent . . . ” or as “Patent Abstracts . . . ”. These references are listed in the front
page as part of the non-patent literature (NPL). A legitimate question, therefore, is whether
these missing 15 percent are (at least partly) available as front-page NPL. If true, extracting in-
text patent citations would not bring more information than parsing ‘patent’ citations reported
in the front page NPL section, a much simpler task. To delve deeper into this question, we
trained a text classifier to determine whether a front-page NPL citation contains information
on a patent. This classifier achieves a sufficient 78.31 percent precision and 89.04 percent recall
on the test set. We then applied it to the universe of front-page NPL citations recorded in
the DOCDB database. In the end, we estimate that there are 1,714,260 such ‘patent’ citations
reported in the front page NPL sections of U.S. patents since 1947. Making the bold assumption
that all these citations appear in the text as well, these patent citations would reduce the missing
patents to 14.63 percent (-0.71 percentage points).

It is now clear that in-text and front-page patent citations exhibit very little overlap. Thus,
quantitatively, considering in-text patent citations does bring new information. Next, we try to
understand whether and how their qualitative characteristics differ.

1.5.3 Textual similarity between citing and cited patents

Figure 1.9 shows distributions of semantic similarity between citing and cited documents for
in-text and front-page citations. Semantic similarity is calculated as the dot product of Google
Patent’s document embedding vectors, which were recently made available to researchers.33 The
embeddings are trained to predict CPC categories from each patent’s full-text with a WSABIE
algorithm (Weston et al., 2011). Figure 1.9 also shows two reference semantic similarity distri-
butions. The first one (‘Within art unit’) is based on the similarity between randomly chosen
pairs of patents examined by the same art unit. The second one (‘Random’) is based on the
similarity between cited in-text patents matched to a random citing patent.

To produce Figure 1.9 we considered only citing and cited patents that were granted by the

32These figures include only in-text citations which were matched with a standard publication number.
33https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-

private-patent-data. Note that a myriad of similarity measures exist, including Younge and Kuhn (2016); Arts
et al. (2018, 2020).

https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data
https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data


USPTO in the years 2000–2009 (for ease of interpretation). In Figure 1.9a we removed all within-
INPADOC-family citations occurring for in-text and front-page citations (N=325,247). Pairs
of patents used for the ‘Within art unit’ and the ‘Random’ distributions have been randomly
omitted to match this sample size. INPADOC families, also known as ‘extended patent families’,
include all patents that can be linked through their priorities (but not necessarily to a single
common priority filing).34 Citations between patents belonging to the same INPADOC family
are much more common in the patent text than on the front page, and removing them improves
the comparability of the similarity distributions. In Figure 1.9b we report the same similarity
distributions, excluding citations between patents belonging to the same DOCDB family. These
families, also known as ‘simple patent families,’ consist of sets of patents linked to a common
priority filing. They are smaller and more selective than INPADOC families. The in-text
citation similarity distribution shown in 1.9b clearly includes many near-identical patents, owing
to the complexity of priority filing strategies. For this reason, we will focus on the distributions
excluding within-INPADOC-family citations (Figure 1.9a), as they are more comparable to
front-page citations.

One can make a number of observations from this graphical comparison of similarities. First,
in agreement with our validation measures, there are unlikely to be a large portion of in-text
citations that are incorrectly matched, as these would be drawn from the random distribution.
Indeed, because we cannot see a conspicuous lump in the in-text similarity distribution in the
region where the random distribution peaks and because the shape is similar to that of the
front-page citations, we may conclude that the error rates in these two sets of citations are
roughly similar. Second, the in-text citation distribution is shifted to slightly higher levels of
similarity when compared to the distribution for front-page citations. This shift indicates that
patents cited in-text are, on average, more technologically similar to the citing patent than
patents cited on the front page. Lastly, the in-text citation distribution displays a fatter tail at
lower similarity levels, particularly around the similarity level expected from patents examined
by the same art unit. This pattern is expected. Because patents cited in the patent text do not
necessarily impact on patentability and do not have to be technologically similar to serve their
purpose, they are drawn from a wider (but still related) set of prior art.

This evidence reinforces our view of in-text citations as a promising indicator of knowledge flows,
potentially less “noisy” than front-page ones (Jaffe et al., 1998; Corsino et al., 2019; Kuhn et
al., 2020) and more closely related to the focal inventors’ prior knowledge, less affected by the
complex patent examination procedure (Choudhury et al., 2020) through examiners’ (Alcacer
and Gittelman, 2006) or patent attorneys’ practices (Jaffe et al., 2000).35

34https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families/inpadoc.html
35Interestingly, this result also suggests that the tracking of long distance technological relationships by in-text

patent citations (hypothesis formulated in section 1.2.1) is only of second order (at most).

https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families/inpadoc.html


1.5.4 Forward citations

The count of forward citations, that is, the number of times a patent is cited by another patent,
has been widely used in various contexts as a way to measure the quality of a patent, but also as
an output measure in settings where innovation or knowledge flows are susceptible to be affected
by another economic variable (see Jaffe et al., 1993; Almeida, 1996; Kerr, 2008; Agarwal et al.,
2009 inter alia). Due to the large interest of the community for this forward citations count
and its central role in innovation research, it seems natural to use our dataset to compute the
forward citations count based on in-text citations rather than the usual front page citations.
Further, we compare the forward citations counts obtained using in-text citations and front
page citations.

To do so, we consider U.S. patents and their in-text and front-page citations. We slightly depart
from raw forward citations counts in two ways. First, in order to make our results immune to
potential variations between in-text and front-page citing patterns, we compute the forward
citations count at the invention level, as defined by the DOCDB family, rather than at the
publication level.36 Second, we exclude citations from patents belonging to the same extended
invention family as defined by the INPADOC family. This is a conservative choice aiming at
excluding self-references in a broad sense.

The first observation is that in-text and front page citations are directed to two partly disjoint
sets of DOCDB patent families. In-text citations point to 5,506,374 distinct families, front
page citations point to 13,817,609 distinct families and 4,262,548 of these families are in both
sets. This result further confirms the fact that in-text citations bring additional and distinct
information from their front page counterparts.

The second observation is certainly the most important and puzzling one: the count of forward
citations based on in-text citations is only weakly related to the same metric obtained from front-
page citations. Restricting to the set of DOCDB patent families with a positive count of forward
citations both on the front page and in the text, the correlation between the two measures is
0.23. Figure 1.10 shows these two forward citations count for a random sample of 10 percent of
the patent families cited both in the text and on the front page. The regression line corresponds
to a univariate model where the dependent variable is the front page forward citations count
and the in-text count is the independent variable. The associated R-squared is close to zero
(0.03), highlighting the poor predictive power of the dependent variable over the independent
variable. Roughly speaking, the two forward citations counts are almost orthogonal.37 The
above result is puzzling and raises a host of questions about the use of in-text forward citations
count.

The third set of observations relates to the distribution of forward citations counts. Figure 1.11

36The kind of pitfall that we want to avoid is, for example, a higher tendency to cite applications in the text
instead of granted patents on the front page and vice versa, including for the exact same invention.

37This result is robust to considering only patents with more than five in-text and front-page citations.



compares the empirical probability (panel 1.11a) and cumulative (panel 1.11b) distribution
function of forward citations counts. It reveals two notable properties. First, the front page
distribution stochastically dominates the in-text distribution. Second, the tail of the front page
distribution is larger. These observations can be partly explained by a fundamental difference
in the citation generating process. Whereas in-text citations are mostly in the hand of the
inventors, hence decentralized among many agents, front page citations are determined by a
finite number of examiners who, by nature, are likely to be aware of a limited number of patents
on each subject. This leads to the emergence of highly cited patents, the so-called ‘focal patent,’
which participate in the larger tail observed in the distribution of front page forward citations
count. It is interesting to note that ‘focal patents’ might well be so partly independently on
their intrinsic social or private value but because of examiners’ biases.

Among our results, the orthogonality puzzle is certainly the most challenging to grasp for the
community.

1.5.5 The internationalization of patent citations

International patent citations, that is, citations to and from patents granted at a foreign patent
office, have been used as a way to measure countries’ contribution to the creation and diffusion
of innovation and ultimately productivity growth. For example, Eaton and Kortum (1996a,b,
1997, 1999) have used international patent citations to infer the direction and magnitude of the
international diffusion of technology. Such studies have a profound impact on our representation
of who are the main contributors of technological progress and worldwide productivity growth.
Here we look at the distribution of U.S. citations by country of patent office obtained using the
‘traditional’ front-page citations and the newly available in-text citations.

We find that in-text patent citations are almost three times as much internationalized than front-
page citations. Figure 1.12 represents the number of citations from U.S. patents by country of
the cited patent for front-page (panel 1.12a) and in-text (panel 1.12b) citations. Since 1947,
the share of in-text patent citations to non-U.S. patents has reached 28.8238 percent while it
is 11.0 percent for front-page citations. Thus, considering only front-page citations leads to
a more U.S.-centric view of knowledge flows. Going further, we find that some countries are
dramatically under-represented in front-page citations as compared to in-text citations. For
example, the share of Japanese patents in-text citations is almost three times as large as their
share in front-page citations. We believe that our representation of the direction and magnitude
of international knowledge flows might well improve in light of our newly available data.

38This result is immune to the exclusion of “self-citations”. Excluding within-INPADOC-family citations, citations
to non-U.S. patents represent 31.38 percent of all citations.



1.5.6 Self-reliance

In the context of the present study, we call ‘self-reliance’ the citation of one or more patents
belonging to the same family or originating by the same patentees as the citing patent itself.
There are two main reasons to be interested in the role of self-reliance in patent citations.
First, the diffusion of a piece of knowledge is likely to be conveyed primarily by the persons
and organisations who created it. Second, one might be worried that in-text citations are
mostly self-reference, that is citations of patents belonging to the same family of invention.
Consequently, they would not bring much information compared to already available patent
family information.

Starting with same-family citations, we map each citing and cited patent to its patent family
and compute the share of citations citing a patent belonging to its own family. We consider both
the DOCDB families and the INPADOC families. As previously explained, INPADOC families
are more permissive as they include in the same group all the documents sharing directly or
indirectly (e.g., via a third document) at least one priority. We find that the share of in-text
citations belonging to the same DOCDB (INPADOC) family is 6.42 (10.65) percent. This is
higher than front-page citations’ self-references figures, which are 0.69 (1.63) percent. That
being said, even considering the most permissive definition of invention families, 90 percent
of in-text citations are not self-references, bringing useful information of patented inventions’
knowledge background outside their respective patent family.

Turning to same-patentee citations, we look at the share of citations having at least one common
inventor or at least one common assignee. We rely on the harmonized names reported in the
IFI CLAIMS dataset, labeling as same-patentee citations those where the name of at least one
inventor (assignee) is the same for the citing and cited patent. We find that 17.43 (22.46) percent
of in-text patent citations have at least one inventor (assignee) in common with their citing
patent, against 5.98 (9.26) percent for front-page citations, that is almost three (two) times as
much. This result confirms the relative importance of self-reliance in knowledge creation which
appears to be even more visible through the lens of in-text citations.

1.5.7 Geographic distribution

A large literature has documented how geography restricts knowledge flows’ breadth (Jaffe
et al., 1993; Audretsch, 1998; Peri, 2005; Belenzon and Schankerman, 2013). Scholars have
pointed to labor mobility within regional labor markets (Almeida and Kogut, 1999) and localized
co-invention networks (Breschi and Lissoni, 2009) as leading mechanisms of knowledge flows’
geographic concentration. Patent (front-page) citations have been a crucial data source for these
studies, proxying the elusive “paper trail” of knowledge (Krugman, 1991) connecting patented
inventions.

In this section, we compare in-text and front-page citations in the geographic space. Specifically,
we take citing-cited inventor dyads in the two citation groups and calculate the distance between



the two inventors’ geocoded addresses (de Rassenfosse et al., 2019b), comparing their geographic
distribution. Despite being a mere descriptive exercise, this analysis can provide useful insights
about differences between in-text and front-page citations along the geographic dimension.

Figure 1.13 shows the probability distribution function and cumulative distribution function of
in-text and front-page citing-cited inventor dyads. The x-axis quantifies distance in kilometers.
All graphs using all kind of citations portray in-text citations as more localized than front-
page ones. Panel 1.13e in particular, shows a higher share of citations within 25km of distance
from the cited inventor’s location for in-text citations, relative to front-page ones. We also
report the same distributions excluding all self-citations between patents appearing in the same
INPADOC family and all self-citations at the assignee-level.39 While in-text citations seem to
still be slightly more localized, the difference with front-page ones is minimal and substantially
less sharp than suggested by unconditional figures, mostly the result of a higher share of in-text
citations occurring at "zero" distance (see panel 1.13f). The higher geographic localization of
in-text citations portrayed in Figure 1.13 when considering all citations seems to be explained
by a larger occurrence of self-citations for in-text relative to front-page citations.

At the descriptive level, in-text and front-page citations do not display particular differences in
terms of their geographic distributions. Nevertheless, we believe that an econometric investiga-
tion will be needed to probe this question properly (e.g., following the approach pioneered by
Jaffe et al., 1993).

1.5.8 Going further

At this point, it is clear that more work needs to be done to precisely determine the method-
ological implications of in-text patent citations and how they should be articulated with the
existing research toolkit. That being said, the previous results might be a bit embarrassing in
the meantime. Front-page patent citations have been used for many different things, including
the measurement of patents’ importance and knowledge flows. Assuming that in-text patent
citations are not just noise, the tiny overlap with front-page citations (see 1.5.2), the orthogo-
nality puzzle (see 1.5.4) and the similarity results (see 1.5.3) are legitimately worrying. These
results raise a simple question: which of the in-text and front-page citations provide the best
proxy of patent importance and knowledge flows? This question goes far beyond the scope
of this paper. The difficulty of this task is notably due to the absence of ground-truth data
for knowledge flows and patent importance. This makes the task of comparing the respective
ability of front-page and in-text citations to proxy these concepts even harder. Still, in the
following lines, we discuss the strategies that seem the most promising to address this challeng-
ing question. First, starting with patent importance, a standard approach would be to extend
Hall et al. (2005) to compare the predictive power of in-text versus front-page citations with

39We identify self-citations using the same procedure employed in section 1.5.6.



respect to patents’ market value. Such analysis could benefit from the newly available data
from Kogan et al. (2017). Second, regarding knowledge flows, we see two promising approaches.
One would be to resort to inventors’ survey as in Jaffe et al. (2000). This is our favourite option
and would certainly be the closest to a ground truth benchmark. Unfortunately, it would also
require a large amount of resources. Another less resource-intensive approach would be to focus
on patents filed at the European Patent office which patent citations are systematically accom-
panied by a code indicating their degree of relevance. Restricting to in-text citations which
are also reported on the front page could provide insights on their relative degree of relevance
compared to front-page citations. Although much more actionable, this approach might suffer
from various selection biases.

1.6 Concluding remarks

This paper introduces a novel dataset on patent citations. It provides 63,854,733 million cita-
tions identified in the full-text of 16,781,144 million U.S. patent documents from 1790 to 2018.
To the best of our knowledge, it is the first openly-released and extensively validated dataset
of the sort. Given the importance of citation data in various fields of the social sciences, we
expect these data to be of considerable interest to the scientific community.

Three main messages are particularly noteworthy. First, we found little overlap between the
‘traditional’ front-page citations and the novel in-text citations. We estimate that the inclusion
of in-text citations adds a net 15 percent more patent citations compared to using front-page
citations alone.

Second, in addition to adding more citations, the inclusion of in-text citations also adds infor-
mation of a different nature due to a different data generation process compared with front-page
citations. In particular, we have argued and provided tentative evidence that in-text citations
offer a particularly relevant trace of knowledge flow compared to front-page citations. We have
also explained why in-text citations represent valuable signals about patent importance. Cap-
turing knowledge flow and measuring patent importance are two of the most popular uses of
patent citations and, therefore, we encourage researchers to explore the present data.

Finally, we have relied on best-in-class techniques from NLP and have performed in-depth val-
idation exercises to ensure the quality of the data, achieving highly satisfactory results. We
see these results as a proof of the considerable potential offered by the open source commu-
nity and more particularly applications of modern NLP to information extraction in applied
economics and management. In this context, we have made the codebase and the replication
material (including code and validation data) natively open source and the data open access.40

We encourage the community to contribute to the continuous improvement of the dataset. Of

40The code is licensed under the MIT license https://opensource.org/licenses/MIT. The data are licensed under
the CC-BY-4 license https://creativecommons.org/licenses/by/4.0/legalcode.
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particular interest will be the deployment of our pipeline to other jurisdictions.

In conclusion, we hope that the public release of the dataset will enable the community to
shed new light on studies exploiting citation data to track knowledge flows and measure patent
importance. Furthermore, the data may open new research questions related, e.g., to strategic
knowledge disclosure (à la Lampe, 2012) or knowledge sourcing (à la Wagner et al., 2014). On
a more technical level, we see value in leveraging the context of patent citations to determine
citation intent (enablement, usefulness, non obviousness, improvement, etc). Such contextual
information could lead to a more accurate usage of patent citation data.



1.7 Tables

Table 1.1: Composition of the dataset

Kind code Kind of document Number Share
Pre 2001 Post 2001

A Patent Patent application 11,909,035 0.71
B Reexamination certifi-

cate
Patent 4,188,597 0.25

S - Design patent 613,050 0.04
P Plant patent Plant patent & Plant

patent application
34,852 2.00E-3

E - Reissued patent 32,226 2.00E-3
H - Statutory invention reg-

istration (SIR)
2,255 1.00E-4

I - - 1,129 6.00E-5

Table 1.2: Composition of the dataset: focus on patents and applications

Kind code Kind of document Number Share
Pre 2001 Post 2001

A Patent - 6,145,197 0.37
A1 - Patent application pub-

lication
5,753,613 0.34

A2 - Patent application pub-
lication (republication)

1,742 1.00E-4

A9 - Patent application pub-
lication (corrected pub-
lication)

8,483 5.00E-4

B1 - Patent (no pre-grant
publication)

776,074 0.04

B2 - Patent 3,412,523 0.2
Notes: Share of full dataset.

Table 1.3: In-text patent citations extraction performance

Number of
patents in the
test set

Avg number of
patent tags per
patent

Precision Recall F1-score

Galibert et
al. (2010)

760 12.75 64.4% 61.0% 62.6%

Lopez
(2010)

20 9.96 97.44% 97.74% 97.68%

Verluise et
al (2020)

160 2.93 97% 82% 89.2%



Table 1.4: In-text patent citations extraction error analysis

Error
type

Category Example

False nega-
tive

1 “introduced into a mold (as in Example 1 of 2,154,639)
wherein it is polymerized to form a A”

2 “Aug. 20, 1935 2,255,030 Tholstrup Sept. 2, 1941 2,394,733
Wittenrnyer Feb. 12, 1946 2,433,349 Drewell Dec. 30”

3 “Filed May 25, 1973, Ser. No. 364,196 Int. Cl. Blk 1/00,
3/06; C01b”

False posi-
tive

1 “US. Cl ..29/492, 29/497, 29/498, 29/502, 29/589, 29/628
[51] lnt.Cl.”

2 “Aug. 12, 1941. ALKAN&#39; emoumnmrc COMPASS I
iled July 15, 1936 3”

3 “No. 09/808,790, (Attorney Docket No. 20468-000110), pre-
viously incorporated herein by reference. FIG”

Notes: The underlined span of text triggered the error. In the false negative case, it was not detected by
Grobid as a patent citation while it should have been the case. In the false positive case, it was detected by
Grobid as a patent citation while it is not.

Table 1.5: Distribution of U.S. patent citations by patent office

Patent office Number of occur-
rences in valida-
tion sample

Share in valida-
tion sample

Share in universe
of U.S. patents

US 203 0.67 0.61
JP 52 0.17 0.09
WO 18 0.06 0.10
DE 9 0.03 0.02
EP 5 0.02 0.03
KR 4 0.01 7.00E-3
FR 4 0.01 6.00E-3
BE 2 7.00E-03 3.00E-3
SA 1 3.00E-03 3.00E-3
CH 1 3.00E-03 3.00E-3
AL 1 3.00E-03 0.02

Table 1.6: In-text patent citations parsing accuracy

Number of
examples in
the test set

Organisation
name

Original
number

Kind code All

Lopez (2010 250 - - - 97.2%
Verluise et al
(2020)

300 98.4% 95.7% 97.6% -

Notes: Lopez (2010) does not distinguish between the accuracy on the three attributes and reports the overall accuracy
of the Finite State Transducers to translate the natural language citation into a fully structured citation represented by its
three attributes.



Table 1.7: In-text patent citations matching performance

True False
Content Number Content Number

Positive A publication number was
correctly matched

137 A publication number was
incorrectly matched

10

Negative No matched publication
number and no match
found by the annotator

36 No matched publication
number but a match was
found by the annotator

17

Table 1.8: In-text patent citations matching error analysis

Error
type

Category Sub-category Example Number
of occur-
rences

False match Incorrect
patent

Badly formatted pre-
2000 Japanese patent

JP5064281 instead of
JPS5064281

5

Incorrect extraction of
pre-1970 U.S. patent
due to bad OCR

CA-8465T-T (from
2,936,846 5/60 Tyler et
al, in reference list)

1

Non patent Garbled table - 2
Technology
class

US-32537
extracted from
“... U.S. Cl.
325/392,
325/37...”

1

Date US-312012
extracted from
“...filed Aug.
31, 2012, . . . ”

1

False no-
match

Formatting Missing leading zeros
after country code or
date

EP592106 instead of
EP0592106

6

Year reported after in-
stead of before patent
number

JP3518222000 instead
of JP2000351822

3

Incorrect extraction of
country code

SU-14553625 extracted
from “U.S. Utility ap-
plication Ser. No.
14/553,625”

1

Wrong ser-
vice call

- - 7

Notes: Error analysis based on 200 random examples.



Table 1.9: Extracted citations judged unmatchable by the annotator

Category Example Number
of occur-
rences

Garbled tables AL-1226-C extracted from “...AL C 257 75.108
67.122 6.016 1...”

11

Provisional patent ap-
plications

US-60723639 extracted from “U.S. provisional
application Ser. No. 60/723,639”; provisional
patent applications are not public information

8

Incorrect and ambigu-
ous number formats

EP-87309853 extracted from “European patent
specification No 87309853.7” (non-standard for-
mat of a non-searchable application number)

4

Incorrect parsed at-
tributes

WO-PTS0767103 instead of WO-
PTUS07067103

5

Non searchable DE-19654649 (not indexed by Google Patents) 3
Non patents (technolog-
ical class, dates, etc)

US-32128 extracted from “... U.S. Cl. 322/79,
310/68 D, 321/28, ...”

10

Notes: The Number of occurrences includes both matched and unmatched examples.

Table 1.10: Number and share of citations matched by patent organisation (selected)

Patent organi-
sation

Total number
of citations

Share of cita-
tions matched

USPTO 37,072,526 89.14
WIPO 6,453,099 81.89
JPO 5,659,300 77.22
EPO 2,228,096 51.27
DPMA 1,371,114 73.46



Table 1.11: In-text and front page citations at-a-glance

Front page In-text

Number of patents 16,781,144 16,781,144
Number of patents with at least one
citation

11,965,720 9,453,181

Share of patents with at least one
citation

71.30% 56.33%

Number of citations 203,557,205 63,854,733
Number of citationsa 203,557,011 46,115,608
Average number of citations per
patent

12.13 3.81

Average number of citations per
patent - conditional on citing at
least one patent

17.01 6.75

Number of US patent citationsa 181,162,466 32,827,382
Share of non U.S. citationsa 11% 28.82%
Median pairwise similarity (dot
product) between citing and cited
patent [lower quartile, upper
quartile]a,c

0.71 [0.62, 0.78] 0.80 [0.68, 0.88]

Share of citations in the same
DOCDB familyb

0.69% 6.27%

Share of cited patents in the same
INPADOC familyb

1.63% 10.51%

Share of cited patents with at least
one shared inventorb

5.98% 17.43%

Share of cited patents with at least
one shared assigneeb

9.26% 22.46%

Notes: a: After 1947 only. b: Matched in-text only. c: After removing within-DOCDB family citations.



1.8 Figures

Figure 1.1: Example of the USPTO “old” patent format (US-3219666-A)



Figure 1.2: Example of the USPTO “new” patent format (US-3746779-A)

(a) Front page

(b) Specification



Figure 1.3: Empirical probability distribution function of citation detection as a function of the
starting character

Figure 1.4: Empirical probability distribution function of citation detection as a function of the
relative place of the starting character



Figure 1.5: Preview of the annotation platform

(a) Patent extraction validation task

(b) Patent parsing validation task (organisation
name)

Figure 1.6: Empirical cumulative distribution function of patents in the validation sample and
in the universe of U.S. patents (by decade)



Figure 1.7: Citing patents over time by in-text citation match status

(a) Number

(b) Share

Notes: “All” (blue solid line) refers to patent publications for which it was possible to match all extracted
in-text citations. “Some” (orange dashed line) refers to patent publications for which it was possible to match
only some extracted in-text citations. “None” (green dash-dot line) depicts patent publications for which we
could not match any extracted in-text citation.



Figure 1.8: Patent citations by origin



Figure 1.9: Citing-cited patent pair-wise similarity distribution

(a) Within-INPADOC-family citations omitted

(b) Within-DOCDB-family citations omitted



Figure 1.10: Forward citations count of invention families: front page citations versus in-text
citations

Notes: We use a 10 percent random sample of all DOCDB patent families with a positive front page and in-text
forward citations count. Each data-point represents a DOCDB patent family. The regressions line corresponds
to the following model: in − text forward citations count = a(front page forward citations count) + b



Figure 1.11: Empirical distribution of forward citations count

(a) Empirical probability distribution function

(b) Empirical cumulative distribution function

Notes: We use a 10 percent random sample of all DOCDB patent families with a positive front page and in-text
forward citations count.



Figure 1.12: Patent citations by “receiving” country

(a) Front page

(b) In-text



Figure 1.13: Distribution of citing-cited inventors distance

(a) All (b) Self-citations omitted

(c) All (d) Self-citations omitted

(e) All – Distance < 200km (f) Self-citations omitted – Distance < 200km

Notes: Distance in kilometers is calculated from the latitude-longitude coordinates of the citing inventor’s address
to the latitude-longitude coordinates of cited inventor’s address. Self citations include within-INPADOC-family
citations and same assignee citations. In panel 1.13a, 1.13b, 1.13c and 1.13d we group observations by 200km
bins. In panel 1.13e and 1.13f we use 5km bins.



1.9 Appendix

In-text patent citations reasons and examples

Citation
Reason

Example
Patent Citation and Context

Enablement

9,607,299
(Transactional
security over a

network)

“Techniques for data encryption are disclosed in, for
example, U.S. Pat. Nos. 7,257,225 and 7,251,326

(incorporated herein by reference) and the details of
such processes are not provided herein to maintain

focus on the disclosed embodiments.”
9,606,907

(Memory module
with distributed
data buffers and

method of
operation)

“Examples of circuits which can serve as the control
circuit ... are described in more detail by U.S. Pat.

Nos. 7,289,386 and 7,532,537, each of which is
incorporated in its entirety by reference herein.”

Novelty and
non-
obviousness

8,100,652
(Ceiling fan

complete cover)

“U.S. Pat. No. 5,281,093, issued to Sedlak, et al.,
discloses a fan blade cover with a zipper. Sedlak,
however, does not protect the fan’s housing and

motor, nor does it prevent blades from spinning.”

9,607,328
(Electronic

content
distribution and

exchange system)

“One skilled in the art will readily appreciate that
there is a great deal of prior art centered on methods

for selecting programming for a viewer based on
previous viewing history and explicit preferences,

e.g., U.S. Pat. No. 5,758,257. The methods
described in this application are unique and novel

over these techniques as they suggest...”

Usefulness

9,607,730
(Non-oleic

triglyceride based,
low viscosity,

high flash point
dielectric fluids)

Applicant directly compares empirical results for the
invention at hand with similar, previously granted

patents.

9,911,050 (Driver
active safety

control system for
vehicle)

“For example, the interior rearview mirror assembly
may comprise a prismatic mirror assembly, such as

the types described in U.S. Pat. Nos. 7,249,860;
6,318,870;..., which are hereby incorporated herein by

reference in their entireties.”

Data record and reproducibility

Data generation and validation reproducibility is guaranteed by the codebase hosted on the
project repository. Validation data are supported by Data Version Control (DVC). Since the
project is open-source and continuously improving, exact replication of the data and results



detailed above requires the user to choose the tag ‘0.3.1’ of the code.41

The data are reported as a nested table that is structured as follows:

• Each entry corresponds to the patent document from which we extracted patent citations.
Each such patent is identified by a publication number (primary key). In addition to
the publication number, we also report its publication date, application identifier, and
patent publication identifier. We also include DOCDB and INPADOC family codes,
which identify a constellation of inter-related patents that protect the same invention
across jurisdictions.

• Each entry has a citation variable in which cited patents are listed and their attributes
are nested. Any detected patent is represented by the two attributes parsed by Grobid,
the code of its patent office and its original number. When these two attributes can
be matched with a publication number, we also report the publication date, application
identifier, patent publication identifier and the DOCDB and INPADOC family identifiers.
Eventually, we report a flag indicating that the extracted citation is likely to belong to
the front matter or the header.

The schema of the table is detailed below.

Name Description Type Nb non
null

publication_number Publication number. STR 16781144
publication_date Publication date (yyyymmdd). INT 15862299
appln_id PATSTAT application identification. Sur-

rogate key: Technical unique identifier
without any business meaning

INT 15862299

pat_publn_id PATSTAT Patent publication identifica-
tion. Surrogate key for patent publica-
tions.

INT 15862299

docdb_family_id Identifier of a DOCDB simple family.
Means that most probably the applica-
tions share exactly the same priorities
(Paris Convention or technical relation or
others).

INT 15862299

41github.com/cverluise/PatCit/tree/0.3.1

github.com/cverluise/PatCit/tree/0.3.1


Name Description Type Nb non
null

inpadoc_family_id Identifier of an INPADOC extended pri-
ority family. Means that the applications
share a priority directly or indirectly via a
third application.

INT 15862299

citation REC 16781144
__.country_code Country code of the cited patent. Parsed

by Grobid.
STR 64185636

__.original_number Original number of the cited patent.
Parsed by Grobid.

STR 64185636

__.kind_code Kind code of the cited patent. Parsed by
Grobid.

STR 6096368

__.status The status of the cited patent. Parsed by
Grobid.

STR 64185636

__.pubnum Concatenation of country code, original
number and kind code of the cited patent.
Based on attributes parsed attributes.

STR 64185636

__.publication_numberPublication number of the cited patent.
Obtained from the google patent linking
API.

STR 49542360

__.publication_date Publication date (yyyymmdd) of the cited
patent based on the matched publica-
tion_number.

INT 49231609

__.appln_id PATSTAT application identification of the
cited patent. Based on the matched pub-
lication_number. Surrogate key: Techni-
cal unique identifier without any business
meaning.

INT 49231609

__.pat_publn_id PATSTAT Patent publication identifica-
tion of the cited patent. Based on the
matched publication_number. Surrogate
key for patent publications.

INT 49231609

__.docdb_family_id Identifier of a DOCDB simple family of
the cited patent. Based on the matched
publication_number. Means that most
probably the applications share exactly
the same priorities (Paris Convention or
technical relation or others).

INT 49231609



Name Description Type Nb non
null

__.inpadoc_family_idIdentifier of an INPADOC extended pri-
ority family of the cited patent. Based on
the matched publication_number. Means
that the applications share a priority di-
rectly or indirectly via a third application.

STR 49231609

__.flag Flag detected citations which are likely to
be in the header rather than in the spec-
ification itself. Flag is True for citations
extracted from patents published in the
pre-1976 format and with all occurrences
detected before character 50 or in the last
4 percent of the text. It is recommended
to exclude those citations from most anal-
yses.

BOOL 71407446

__.char_start First character of the detected
cited patent. Refers to descrip-
tion_localized.text in patents-public-
data.patents.publications.

INT 71407446

__.char_end Last character of the detected
cited patent. Refers to descrip-
tion_localized.text in patents-public-
data.patents.publications.

INT 71407446

Notes: Nested variables are denoted by a dot. For instance, __.country_code is the country code of a cited
patent nested in the citation variable.
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Abstract

Innovation is an important driver of potential growth but quantitative evidence on the
dynamics of innovative activities in the long-run are hardly documented due to the lack of data,
especially in Europe. In this paper, we introduce a novel dataset on the location and nature
of patentees from the 19th century using information derived from an automated extraction of
relevant information from patent documents published by the German, French, British and US
Intellectual Property offices. We then propose an exploration of this new dataset and describe
key facts on the geography of innovation, the role of migration, and the nature of inventors
over more than a century. Our results exhibit important differences across the four countries
considered.
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2.1 Introduction

Endogenous growth theories (Romer, 1990; Aghion and Howitt, 1992a) have placed innovation
at the hearth of the driving forces behind long-run growth. In parallel, the availability of new
quantitative data has paved the way for numerous studies analyzing the social and economic
implications of innovation activities and describing the environment favorable to enhance inno-
vation (see Hall and Harhoff, 2012 for a review). Most of these studies use patent documents
to measure innovation across time and space. While patents are arguably imperfect and incom-
plete proxies for innovation – not all inventions are patented with heterogeneity in patenting
propensity across countries, time, sectors and firm size, see Arundel and Kabla, 1998; Mansfield,
1986 – they are however widely used in the economic literature because of the rich set of infor-
mation embedded in patent publications and their availability. In addition, despite their known
limitations, evidence shows that the use of patents as a measure for innovation nevertheless
provides a relevant signal (they are in particular well correlated with R&D activities, see Pakes
and Griliches, 1980; Acs and Audretsch, 1989).

The patent system has been in place for a very long time1, yet only limited information is
available before the 1980s and publications did not systematically exist before the end of the
19th century in most countries. One known exception is the United States Patent and Trade-
mark Office (USPTO) which consistently published patents since 1836 and made them publicly
available2. In this specific case, extracting the information of interest (e.g., inventors, assignees,
locations. . . ) can therefore be performed in a single step; either manually or using simple se-
mantic rules. This has motivated early efforts to exploit and study parts of this rich corpus of
documents (e.g. Lamoreaux and Sokoloff, 1997, 2000; Sokoloff, 1988). Recent improvements in
large data handling and text data processing have stimulated a renewed interest in large scale
use of historical patents (in particular Packalen and Bhattacharya, 2015; Petralia et al., 2016;
Akcigit et al., 2017b; Berkes, 2018b; Sarada et al., 2019). Thus far, this momentum has mostly
been restricted to US patents - notably due to the public availability of US patents text data.3

Consequently, our understanding of the long-term development of innovative activities is largely
based on a US perspective. In contrast, we do not know much about the forces at stake in other
major innovative countries, namely European technological leaders, before the dawn of the
21st century. In particular, the location, occupation and citizenship of patentees (inventors or
assignees), which are key to the study of innovation dynamics, are unavailable from standard
patent datasets such as PATSTAT and Claims before the 1980s. However, most historical
patent documents are available as scanned images. Starting from these images and using a

1It is commonly acknowledged that the first British patent was granted to John of Utynam in 1449, see Plasseraud
and Savignon (1983).

2USPTO patent publication texts are publicly available for bulk download from the USPTO website and the
Google Patents public dataset.

3With some notable exceptions that restrict to patents published before the 19th century, see e.g. Hanlon (2016);
Nuvolari and Tartari (2011); Nuvolari et al. (2020, 2021), but do not focus on the geography of patentees.

https://www.uspto.gov/learning-and-resources/bulk-data-products
https://www.google.com/googlebooks/uspto.html


pipeline of data science and Natural Language Processing (NLP) steps, we extend previous
work restricted to US patents, both in terms of coverage and methodology. Using raw images
of patent documents as our input, we extracted and structured the embedded information and
finally produced a relational database covering patents published in Germany (including East
Germany), France, the United Kingdom, and the US since the 19th century.

Next, from this novel database, we investigate a number of historical facts. We first show
that innovation is a highly regionally concentrated activity, even when population is controlled
for. Yet, the level of spatial concentration and its development over the 20th century show
clear differences across the four countries. The US starts from a slightly more multi-polar
model with several clusters located in the North East, while at the same time, the capital
regions of European countries (Paris, Berlin, and London) accounted for the very large majority
of patentees. The 20th was a period of progressively moving to a less concentrated model
and in particular after WW2. At the end of the century, the geography of innovation in the
US and Germany was characterized by multiple centers, while France continued to be highly
concentrated and the United Kingdom in between. Second, we look at the internationalization
of innovation, as measured by the share of foreign inventors in each patent offices. The results
clearly indicate a decline in domestic bias during the period following WW2. Moreover, when
looking at the country of residence of foreign inventors, we notice that flows of innovation, like
trade flows, follow a gravity law: closer countries tend to exchange more. Third, we look at the
inventors and exploit the information on their location and occupation to show how the typical
profile of an inventor has changed over time. Specifically, we document a change in the nature of
patent activities, with more and more inventors declaring to be engineers in the United Kingdom
and Germany and less and less single inventor patents. We also exploit the very high details on
the location of patentees in British patents to look at the correlation between the wealth of the
neighborhood and the likelihood of becoming an inventor using data on London at the turn of
the 19th century. We find that the probability of becoming an inventor increases with wealth,
except for the wealthiest districts of London. Finally, we leverage information on the citizenship
of domestic inventors in the United Kingdom and the US to look at the nature of innovation
done by immigrants. We show that immigrants tend to patent in different technological fields
than other inventors, and typically do more radical innovation, as measured by the novelty of
the publication.

Our contribution is therefore threefold. First, to the best of our knowledge, our database is the
largest of its kind, both in terms of time-space coverage and scope of applications.4 Second,
we use our database to document historical facts on the nature and dynamics of innovation
over the 20th century. Third, we make our dataset open access and we open source tools to

4Key aspects of the database, such as the occupation of the inventors, are entirely absent from US patents, hence
from existing databases, but still available from East-German, German and British patents. Our database
therefore offers the unprecedented opportunity to shed new lights on the nature of inventors over time inter alia
as we will develop in this paper.



help the community build on/extend our work.5 Despite the large number of efforts in the
field for US data, we are not aware of any other publicly available database to date with
similar coverage. We have also made the database as interoperational as possible. Each patent
and geographical information are associated with standard identifiers that should facilitate the
matching of Patentcity with other data source.

We hope that this work will encourage researchers to use and extend our work to complete our
knowledge on innovation in the 20th century and earlier.

Related literature. Our project relates to the growing and recent literature that aims at
overcoming the lack of historical data on the location of innovative activities using patent
documents. We have already mentioned early effort by Lamoreaux and Sokoloff (1997, 2000);
Sokoloff (1988) which are based on a small sample of patents that are manually classified and
geocoded. More recently, Nicholas (2010) studied innovation activities between 1880 and 1930
in the US thanks to the construction of a new dataset that restrict to a 10% sample of USPTO
patents that were not associated with a specific assignee. Since then, other datasets have
extended this work by implementing automatic rules to the text of the patent publications to
extract relevant information, namely Sarada et al. (2019); Packalen and Bhattacharya (2015);
Berkes (2018b); Berkes and Gaetani (2019); Akcigit et al. (2017b, 2018) and Petralia et al.
(2016). These datasets follow different purposes. For example Akcigit et al. (2018) use patent
data to measure the impact of taxes on individual inventors and firms, Berkes and Gaetani (2019)
look at the geographical concentration of innovation in history and Packalen and Bhattacharya
(2015) analyze the role of physical proximity as an engine for new ideas and innovation. They
also differ in the nature of the information they focus on, their time frame and the way they
collect the data. The accuracy of these databases is usually high based on different criteria
and despite their differences, they paint a consistent picture of the nature of inventions in the
history of the US (see Andrews, 2019 for a comparison of existing datasets). However, all these
datasets focus on USPTO patents only and do not include information on patents filed in other
patent offices. Of course, some scholars have studied innovation in Europe and before WW2
in the past, either using alternative data (e.g., Moser, 2005) or using a subset of patents (e.g.
Nuvolari and Tartari, 2011; Nuvolari and Vasta, 2017; Andersson and Tell, 2018). However,
none of these projects attempted to add geographical information to a comprehensive set of
patents. For the more recent period, one notable exception is de Rassenfosse et al. (2019c) who
used information available from the patent office registers on the address of patentees to geocode
assignees and inventors’ locations all over the world since the 1980s. This of course includes the
four countries we are focusing on. We view our work as completing these projects by extending
these works either in time or in space thanks to substantial methodological novelties.

5The pipeline code base is publicly available and fully documented on the GitHub repository of the project at
www.github.com/cverluise/patentcity. Non technical additional material is also available on the project website
at www.patentcity.xyz.

www.github.com/cverluise/patentcity
www.patentcity.xyz


In this paper, we also present examples of analysis that can be done from this new dataset. In
particular, we derive historical facts about the geography of innovation. This relates to a rich
literature that considers the spatial heterogeneity of innovative activities. Based on relatively
recent data, this literature has highlighted that innovative firms, research laboratories, and
universities but also venture capital funds are geographically organized around clusters (e.g.,
Delgado et al., 2010; Hausman, 2020). As a result, the modern geography of innovation is
characterized by local specialization hubs (Egger and Loumeau, 2018; Buzard et al., 2017) and
by the existence of superstar cities (Gyourko et al., 2013; Carlino et al., 2007). These clusters
facilitate the diffusion of knowledge (Rosenthal and Strange, 2003; Feldman and Kogler, 2010)
and maximize the positive social spillovers that innovation generates (Audretsch and Feldman,
1996; Klenow and Rodriguez-Clare, 2005). With our data, we approach this question using a
long-term view which allows us to look at how the concentration of innovation has changed over
time, and whether these developments are different across countries.

Our dataset also contains some information about the citizenship of inventors which allows us
to derive some results about the impact of migration on innovation. This naturally speaks
to the literature on the relation between immigration and innovation which consistently finds
that immigration is a privileged vehicle for importing knowledge. For example, Bahar et al.
(2020) uses a large set of countries and recent data and document that the probability of a
country to experience an abnormal momentum in patenting activity in a technological field
is positively affected by an increase in the influx of migrants coming from a country with a
patenting advantage in this field. Bernstein et al. (2018) show evidence for this using data for
the US since the 1990s. In addition to relying on different knowledge and being more productive
than their domestic counterparts, foreign-born inventors also generate larger spillovers. This
was notably the case for Jewish chemists fleeing the Nazi as studied by Moser et al. (2014)
whose overall impact on innovation largely exceeded their personal contribution. On the other
hand, Borjas and Doran (2012) show that immigration of scientists can have a negative business-
stealing effects on the productivity of domestic scientists, but this adverse effect is more likely
to materialize in very constrained labor markets (in their case, mathematicians in academia). In
terms of historical trends, Akcigit et al. (2017b) and Arkolakis et al. (2020) provide large scale
historical research stressing the crucial role of the 1880-1940 immigration on the dynamics of US
innovation. Specifically, Arkolakis et al. (2020) find that European immigrants spurred more
radical innovations compared to domestic inventors while Akcigit et al. (2017b) find that the
specific expertise brought by immigrants during the 1880-1940 period resulted in more patenting
in these areas in the 1940-2000 period. In the case of the United Kingdom and the US, our
dataset contains direct information on the citizenship of inventors which allows us to look more
directly into these questions.

More generally, looking at inventors over the 20th century brings interesting information about
how innovative activities have changed (see e.g., Akcigit et al., 2017b; Berkes, 2018b), in par-
ticular in time of crisis (Babina et al., 2020). This is what is done in Akcigit et al. (2017c)



and Sarada et al. (2019) which have both documented that most US inventors are white males
but that this pattern changes slightly over time. Sarada et al. (2019) also reports that the
typical occupation of an inventor moves away from farming to engineer and scientists. In these
two studies, information is obtained by matching the name reported in patent publications to
different vintage of the census. In this study, we complement these findings by looking at the
information directly reported in patent publications. In addition to the citizenship, we also
extract and use information on the occupation of inventors whose changes in a window on the
evolution of the nature of innovative activities.

From a data perspective, our work borrows a lot from modern NLP, in particular to the Named
Entity Recognition (NER) field. This strand of literature seeks to develop algorithms to detect
mentions of predefined semantic types, either generic (e.g., person, organization, location, etc)
or domain specific (e.g., assignee, inventor, occupation, etc). Two approaches coexist in the
literature. First, the rule-based and statistical methods (see Li et al., 2020 for an in-depth
survey of the NER literature). Rule based approaches usually leverage large domain specific
gazetteers (Etzioni et al., 2005, Sekine and Nobata, 2004) and syntactic-lexical patterns (Zhang
and Elhadad, 2013). However, this approach is largely unable to handle inherent ambiguities
of natural language and to generalise to new documents. To overcome these limitations, the
literature has introduced statistical approaches. Starting with text data annotated by humans
with entity labels, machine learning algorithms are trained to learn a model to recognise similar
patterns from unseen data. The first generation of this class of algorithms, notably including
Hidden Markov Models (Eddy, 1996) and Conditional Random Fields (Lafferty et al., 2001),
typically rely on feature engineering. More recently, statistical approaches leveraging deep
learning have repeatedly advanced the state-of-the-art performance in the field. Such models
are able to exploit non linearity to uncover complex and hidden features automatically, without
the need for feature engineering or built-in domain expertise (Collobert et al., 2011; Huang et
al., 2015; Lample et al., 2016; Chiu and Nichols, 2016; Peters et al., 2017). The class of models
we use to extract relevant data from the patent documents belongs to this latter group.

The rest of the paper is organized as follows. Section 2.2 describes our novel dataset. The
following sections report major historical facts on the dynamics of innovation since the 19th

century in Germany, France, Great-Britain, and the United States of America. Section 2.3
chronicles the concentration of inventive activity within countries across time. Section 2.4
informs the magnitude and direction of the international flow of innovation between countries
over time. Section 2.5 portrays the socioeconomic characteristics of inventors. Section 2.6
examines the role of migration in inventive activity within countries.

2.2 Data

In this section, we detail the construction of the database. The key steps are the following.
We start by collecting the patent document images. We convert these document into text



data using Optical Character Recognition (OCR). We then leverage modern Named Entity
Recognition (NER) techniques to extract the relevant information from the patent text: the
name of inventors and assignees, and, if available, their locations, occupations, and citizenship.
These attributes are then tied together using a simple relationship prediction algorithm (e.g.,
an inventor is linked to his location). Finally, we enrich the dataset, in particular we take
care to translate the extracted natural language text spans into harmonized attributes. In
particular, we geocode the extracted locations and provide administrative codes to facilitate
the interoperability of the database with other sources. Figure 2.46 summarizes the workflow
that we describe in detail in this section.6

2.2.1 Data collection and coverage

Contrary to the USPTO, patent publications from the East German, German, French and
British intellectual property offices are not publicly available for bulk download in text format.7

To overcome this obstacle, we scraped the patent document images and extracted the embedded
text using Tesseract v5.0 (Kay, 2007), a popular open-source OCR software. A qualitative
assessment of the results showed that the quality of the text of USPTO patents could be
improved by using the latest version of Tesseract compared to the text provided by the USPTO
itself and generated by former OCR technologies. Hence, we used the patent images made
available by the USPTO and implemented in-house OCR in order to maximize the quality of
the text and to make our dataset more consistent across different patent offices.

We restrict attention to utility patents. Utility patents are the class of patents which cover the
creation of a new or improved –and useful– product, process, or machine.8. For the sake of
brevity, we refer to utility patents as as patents thereafter. As previously mentioned, we focus
on patents published by the East German, German, French, British and US patent offices. Data
collection is subject to two conditions. First, we need patent publications to exist and to be
available in a digital image format. Second, we need these documents to include at least some
geographical information. These conditions have been met consistently for patents published
between 1950 and 1992 for East-German patents (with the exception of the period 1973 and
1976), from 1877 for German patents, from 1903 for French patents, from 1893 for British
patents and from 1836 for US patents. Starting from those publication dates, we collect all
patents published until 1980. Overall, this represents around 8.9 million documents.

After 1980, we complete our data using the work of de Rassenfosse et al. (2019c) which reports
the patentees location for a very large corpus of patents, including publications from the patent

6The codebase is open source and fully documented on the project GitHub repository.
7Patent search engines such as EspaceNet and Google Patents enable manual patent download on a per-document
basis. Unfortunately, both of them impose quotas on the daily number of downloads.

8Utility patents cohabit with other types of patents. They are usually identified by a set of kind codes, that
is the last letter of the DOCDB publication number. Appendix 2.8 reports the list of kind codes selected as
referring to utility patents for each patent office.

https://github.com/cverluise/patentcity


offices we are interested in. When necessary, we completed their corpus with patents published
after 1980 but missing from their dataset to make sure that the transition between the two
datasets is smooth.9 Our dataset comprehensively10 spans over the following periods: 1877-
1980 for German patents, 1950-1972 and 1977-1992 for East German patents,11 1903-1980 for
French Patents, 1893-1980 for British patents and 1836-1980 for US patents. After 1980, our
dataset smoothly splines over de Rassenfosse et al. (2019c)’s which provides data up until 2013
included.

Overall, we find that our dataset covers between 80% and 100% of the published patents reported
by the IFI Claims and PATSTAT datasets12 for each patent office and publication year under
consideration (see Appendices 2.42 and 2.44). It should also be stressed that after the creation
of the European Patent Office (EPO) in 1977, patents granted by the EPO and validated by
the national offices for domestic usage are still reported by our dataset.

2.2.2 Information extraction

Our information extraction pipeline is made of two layers. First, a NER model in charge of
extracting the entities of interest. Second, a relationship prediction model which role is to
resolve the relations between the extracted entities. Both layers are crucial to fully exploit the
potential of patent texts.

Entities

Our goal is to extract the names of the inventors, the names of the assignees but also their
location, occupation and citizenship when applicable. The exact definition and actual examples
by countries are reported in Table 2.1 and discussed in Appendix ??. This is naturally subject
to the actual reporting of these entities in the text of the patent. The reason why we focus on
this set of information is largely influenced by the last decades of the innovation literature. The
relation between geography and innovation occupies a central place in this literature. The occu-
pation of inventors also constitutes a valuable asset to study their socio-economic characteristics.
Eventually, the combination of inventors’ citizenship and location provides their immigration
status, which appears to be key to understand innovation dynamics. One important remark is
that the very notion of inventor and assignee is mainly a US and modern times terminology.
In many offices and at many points in time, there is no explicit distinction between the two.
In this case, we called inventors any human being involved in the invention and assignee any

9In particular, we collected patents from the East German patent office until the last one in 1992
10Depending on the office, our coverage varies between 98% and 100% of the utility patents listed in the Google

Patents Public Data, the largest publicly available bibliographic dataset of patent publications.
11To our knowledge, digitized copies of East German patent documents published between 1973 and 1976 are

not available.
12The IFI Claims and PATSTAT datasets are the two standard patent datasets used in academia.



company related to the invention.13

Table 2.1 summarizes the entities extracted by patent office. We were able to extract the
names of the inventors and assignees and their locations from all patent offices. In contrast, the
occupation and citizenship are only available for some countries. Specifically, the occupation is
reported in East-Germany, Germany and the United Kingdom while the citizenship is reported
in the United Kingdom and the US. Importantly, even within a given patent office, the reporting
of a given entity can vary over time. See Appendix 2.8 for more details on the share of patents
from which we extracted at least one entity of each category by publication year and countries.
Similarly, the level of precision of the location (i.e. country, state, county, . . . ) changes across
time and countries. More details are provided in Figure 2.34.

Table 2.1: Entities extracted by countries

DD DE FR GB US

E-Inventor ✓ ✓ ✓ ✓ ✓
E-Assignee ✓ ✓ ✓ ✓ ✓
E-Location ✓ ✓ ✓ ✓ ✓
E-Occupation ✓ ✓ ✓
E-Citizenship ✓ ✓

Time span 1950-1992 1877-1980 1903-1980 1893-1979 1836-1976
Notes: The prefix E refers to “Entity” and is added to make sure that they entities not con-
founded with relationships designated with similar names and reported with a R prefix. The
actual reporting of the entities can vary over time. See Appendix ?? for more details on the
share of patents from which we extracted at least one entity of each category by publication
year and countries. This table only reports the entities extracted in the course of this project.
Later results incorporate de Rassenfosse et al. (2019c) dataset which provides the names and
locations of German, French, British and US patentees after the end of our dataset. DD stands
for East Germany, DE for Germany (which only includes West Germany during the 1950-1989
period), FR for France, GB for the United Kingdom and US for the United States of America.

Named Entity Recognition

Meta-data (e.g., patentees’ names and locations) on historical patents are reported in an un-
structured way, most often as part of the first paragraph or in the header of the document.
Table 2.2 shows typical examples for each patent office. To our knowledge, previous historical
patent data projects used rule-based methods to extract such domain-specific data. Instead,
we use deep-learning based statistical NER. As previously explained in the literature review,
this class of models have been conceived by the NLP community specifically to improve on rule-
based approaches and have repeatedly advanced the state-of-the-art since their introduction. In

13This is a necessary but arbitrary point which has important implication for comparability across countries. For
example: French patents most of the time did not explicitly report the name of the inventor but only the name
of the “déposant” (applicant). In some cases, this applicant is a firm and in other cases a physical person. In
rare instances, the name of the inventors are given in addition to the name of the applicant. For this reason,
we chose to define this applicant as an assignee. See Appendix 2.8 for more details.



our specific case, they also present the advantage to have considerable generalization abilities
based on a relatively small amount of examples - making them robust to typos and variations
in word-use which can be very frequent at some patent offices and would give rule-based models
a hard time. It is also worth noting that, contrary to most previous works, we produced and
release manually annotated data making which supports rigorous and transparent performance
evaluation and future extensions.14

Table 2.2: Example of patent documents with embedded entities

Country Example Source

DD Erfinder: Wilhem Uhrig, WD. Inhaber: Dr. Plate GmbH, Bonn, WD. DD-79836-A

DE Bela Barenyi, Stuttgart-Rohr, ist als Erfinder genannt worden. DAIMLER-
BENZ Aktiengesellschaft, Stuttgart-Unterturkheim

DE-869602-C

FR MM. Joseph MARTINENGO et Jean-Baptiste GAUDON résidant en France
(Loire)

FR-504101-A

GB We William Christopher Fanner, and Henry Elfick, trading together as De
Grave, Short, Fanner & Co., of Farringdon Road in the County of London,
Scale and Balance Manufacturer, do hereby declare the nature of this inven-
tion...

GB-189704983-A

US Be it known that I, PAUL SCHMITZ, a subject of the King of Prussia, Ger-
man Emperor, residing at Cologne-Niehl, in the Kingdom of Prussia, German
Empire, have invented

US-1108402-A

Notes: Examples of patent document for each of the fifth patent offices considered. Colored text correspond at the entities that we
seek to extract: red for inventors, purple for assignees, olive for locations, brown for citizenship and blue for occupations.

In practice, the NER models were trained using spaCy v3 (Honnibal et al., 2020), a popular
Python NLP library offering an efficient framework for reproducible custom domain NLP mod-
els. The manually labeled dataset was split in two subsets, the training set used for model
training and the test set, used for model’s performance evaluation. The goal of this approach is
to avoid over-fitting, that is the tendency of the model to “learn training data by heart” which
can produce very high performance on the training set while harming its ability to generalize to
other data. Each office was treated independently from one another and multiple models were
trained for offices to account for the large changes in the format of the patents (see Appendix
2.8). More details are provided in Appendix ??.

In Table 2.3, we report the performance of the models on the test sets for each entity of interest.
The performance metrics are respectively: the precision, that is the share of extracted entities
which are actual entities; the recall, that is the share of actual entities which are indeed extracted
and the F1-score, the geometric mean of the precision and the recall. In short, the higher the
F1-score, the better the reliability of the model. For the sake of brevity, we average over models

14For the labeling tasks, we used Prodigy v1.10 (Montani and Honnibal, 2018). Data and annotation guidelines
are available on the project GitHub repository at https://github.com/cverluise/patentcity.

https://github.com/cverluise/patentcity


performance when there was more than one data format, hence models, for a given office. We
report in brackets the underlying number of models. The average F1-score over all extracted
entities ranges from 0.94 to 0.98 on the test set which indicates a high level of performance.

Table 2.3: Performance of the NER models

DD (2) DE (2) FR (2) GB (1) US (4)

E-Inventor 0.95/0.95/0.96 0.98/0.97/0.98 0.99/0.99/0.98 0.95/0.96/0.96 0.99/0.99/0.99
E-Assignee 0.97/0.97/0.97 0.98/0.98/0.98 0.98/0.98/0.98 0.93/0.92/0.93 0.96/0.96/0.96
E-Location 0.98/0.97/0.97 0.99/0.99/0.99 0.99/0.99/0.99 0.92/0.92/0.92 0.98/0.98/0.98
E-Occupation 0.96/0.97/0.96 0.97/0.97/0.97 - 0.90/0.86/0.88 -
E-Citizenship - - - 0.96/0.96/0.96 0.98/0.98/0.98

E-All 0.97/0.96/0.97 0.99/0.98/0.98 0.97/0.97/0.97 0.93/0.94/0.94 0.98/0.98/0.98
Notes: The prefix E refers to “Entity” and is added to make sure that they entities not confounded with relationships
designated with similar names and reported with a R prefix. Reported performance metrics were computed on the test
set - unseen during training. The figure in brackets indicates the number of different models used for the office. For ex-
ample, for the German office, there was a major shift in the patent information display in 1881 forcing us to train two
different models (see Appendix 2.8). Performance metrics are reported as follows: precision/recall/F1-score. Model by
model performance for each patent offices can be found in Appendix ??.

Relationship prediction

At this stage, we have extracted the information of interest from a patent with a high level of
reliability but the output is basically a “bag” of entities. For example, assuming that we have
extracted one inventor, one assignee and two locations, then we still do not know which one is
located where. Such relationship can be extremely detrimental to the analysis. For instance, if
we want to know whether an inventor is an immigrant, we need to link its name to a citizenship
and to a location. For this reason, we go one step further and reconstruct the latent relationships
between our different entities. That is what we call relationship prediction and to the best of
our knowledge, we are the first to implement this kind of approach in the field.

In our case, there are three different kinds of relationships: the location which relates the
patentee to his address, the occupation which relates the patentee to his occupation, or academic
title and the citizenship which relates the patentee to its citizenship or country of origin. There
are many different ways to implement such relationship prediction but we found that a simple
algorithmic approach leveraging the relative position and the absolute distance of the attributes
(location, occupation, citizenship) to the patentees (inventor, assignee) with a slight level of
hyperparameter fine tuning performs surprisingly well. Our approach is the following: we
iterate over extracted patentees, harvest all attributes positioned either at the right or left of
the patentee within a distance expressed in terms of number of words (or tokens) and keep the
closest element of each attribute family (if any). In this algorithm, two hyperparameters need
to be chosen: the position (right, left, both) and the size of the window (expressed in tokens).

We evaluate the performance of this procedure on a set that has been manually annotated in
Table 2.4. Since parameter fitting remains minor, we considered that the risk of overfitting is



relatively small and did not split the labeled set in a training and test set and report performance
on the training set. Same as before, we average performances over the different models for each
patent offices for simplicity. The overall F1 score varies from 0.93 to 0.98 depending on the
office, which guarantees a high level of confidence.

Table 2.4: Performance of the relationship prediction models

DD (2) DE (2) FR (2) GB (1) US (4)

R-Location 0.98/0.96/0.97 0.99/0.99/0.99 0.98/0.97/0.98 0.97/0.92/0.94 0.98/0.93/0.95
R-Occupation 0.88/0.86/0.87 0.98/0.99/0.98 - 0.96/0.94/0.95 -
R-Citizenship - - - 0.92/0.93/0.92 0.98/0.97/0.97

R-All 0.94/0.93/0.93 0.98/0.99/0.98 0.98/0.97/0.98 0.95/0.93/0.94 0.97/0.93/0.95
Notes: The prefix R refers to “Relationship” and is added to make sure that relationships are not confounded with en-
tities designated with similar names and reported with a E prefix. The number in brackets indicates the number of dif-
ferent models used for the office (see Appendix 2.8). For example, for the German office, there was a major shift in the
patent information display in 1881 forcing us to train two different models. Performance metrics are reported as follows:
precision/recall/f1-score. Model by model performance for each patent offices can be found in Appendix ??.

2.2.3 Data enrichment

At this stage, each patent is characterized by a set of extracted inventors and/or assignees who
are themselves characterized by a set of attributes, as is usual in modern patent datasets. Most
importantly both the extracted entities and predicted relations exhibit a high level or reliability.
However, some limitations remain for research usage. Extracted attributes are reported in raw
text, which requires geocoding for locations and further disambiguation for the citizenship.
The publication dates from German patents published before 1919 and East German patents
published before 1972 are missing from standard datasets, which calls for some additional effort
ass well. In this section, we detail how we overcame these limitations and the resulting data
enrichment process.

Location geocoding

Our first task is to turn natural language attributes into high quality and harmonised vari-
ables. The most challenging and crucial task was certainly the geocoding of natural language
locations, that is the translation of free-text locations such as “Farringdon Road in the County
of London” (from patent GB-189704983-A) into well defined geographic attributes (country,
state, county, . . . ) and coordinates. This “geocoding” exercise is well known as challenging and
resource intensive due to the many ambiguities and typos that can be found in natural language
addresses and the size of the universe of worldwide addresses. In our case, there are the addi-
tional difficulties of multiple languages and changing names and borders since the beginning of
the considered time span. For all these reasons, we found that the best output quality was only
achievable using a commercial geocoding supplier. Having close to 3 million unique addresses to



geocode we mixed two providers (HERE and Google Maps) to maximize efficiency. Specifically,
we leverage the specific features of the two services: on the one hand, HERE tends to have a low
rate of errors but a relatively high rate of “unmatched” locations; on the other hand, Google
Maps tends to have a very low rate of unmatched locations -notably thanks to a better under-
standing of locations expressed in plain – language and historical entities which have changed
names (e.g., “Karl-Marx Stadt” in East Germany now known as “Chemnitz”)–, sometimes at
the expense of a slightly higher error rate (see Perlman et al. (2016) for a discussion of the
geocoding of historical patent using modern Geographic Information System). With that in
mind, we decided to get the best of both worlds. We first processed locations through HERE
batch geocoding API and then restricted Google Maps geocoding to the unmatched locations.15

The two outputs were relatively straightforward to align in a common data structure.

Table 2.5 presents the share of matched locations together with the level of quality of the
geocoding (conditional on match). Tthe geocoding output was validated by hand. The human
annotator was given both the extracted location and the geocoded address. He would then
choose from a set of options (country, state, county, . . . ) to select the finest geographic level at
which the location was rightly geocoded. The share of locations matched varies from 88.3% for
the British patents to 99% for French patents. Conditional on matching an address, more than
92% of the locations are rightly geocoded at the country level for all offices. This figure can
even exceed 98% for French and US patents. Results at more detailed geographic levels vary
depending on how detailed the location was in the patent document itself. It goes up to 95%
at the city level for German and US patents versus only 33.5% for French patents.

Table 2.5: Performance of the geocoding

DD DE FR GB US

Match 0.987 0.976 0.990 0.883 0.975

Country 0.927 0.971 0.986 0.934 0.985
State 0.576 0.957 0.483 0.924 0.982
County 0.569 0.953 0.456 0.910 0.968
City 0.569 0.950 0.335 0.887 0.951
Postal Code 0.116 0.251 0.006 0.727 0.185
District 0.109 0.226 0.006 0.690 0.085
Street 0.014 0.035 0 0.605 0.034
House number 0.007 0.010 0 0.394 0.002

Notes: The match rate is the share of locations for which either
HERE or Google Maps found an address. The match rate is based
on the entire dataset. Conditional on a match, other figures repre-
sent the share of locations which were rightly geocoded at a given
geographic level based on the manually validated sample. For in-
stance, for German patents, 97.6% of the extracted locations were
matched and 95% of the matched addresses were right at the City
level. These conditional figures are based on a manually annotated
sample.

15Both APIs are respectively documented at the following addresses HERE API and Google Maps API.

https://developer.here.com/documentation/batch-geocoder/dev_guide/topics/introduction.html
https://developers.google.com/maps/documentation/geocoding/overview


Citizenship disambiguation

Our second task consisted in turning citizenship statements (e.g., “a citizen of the United States
of America”, “a subject of the King of Great Britain”...) into harmonized and unambiguous
country codes. This exercise can be seen as a translation task where we start from a finite (but
large) set of possible citizenship statements which we want to map to another (smaller) finite
set of country codes.16

A simple way to implement such mapping is to define a set of regular expressions which, when
matched, trigger a pre-determined country code. We collected a list of citizenship and country
names together with the corresponding country codes and authorized a small amount of edit
distance between the target and the extracted text to account for typos. Confronting the output
with a set of manually annotated citizenship, we find that this procedure achieves a satisfying
level of accuracy defined as the share of initial citizenship statements mapped to the right
country code. We achieve 98.7% and 92.9% accuracy on British and US patents respectively.

Publication date approximation

The final data enrichment exercise was especially crucial for later analysis since it has to do
with the time dimension of the dataset. As previously noted, standard datasets do not report
the publication date of patents German patents published between 1877 and 1919 and East
German patents published between 1950 and 1972. Fortunately, in both cases the publication
number can be used in some way to overcome the issue. In the case of Germany, we use
Patent Gazette published by the German patent office since 187717, take the last publication
number reported under the section “Erteilungen” (i.e. “Publications”) and define it as the last
publication number of the year. We then iterate backward to fill the publication year until we
hit the last publication number of the previous year. To our knowledge, East Germany did not
generate such a Patent Gazette. Nevertheless, we were able to develop a similar approach based
on publication numbers. First, we drew a random sample of undated East German patents.
Second, we manually filled their publication date based on the information displayed on the
patent itself. Third, we used the clear but imperfect relation between the publication number
and the publication year to find thresholds similar to those found in the German Patent Gazette.
Specifically, we chose the publication number thresholds so as to maximize the F1-score of the
predicted publication year. Doing so, we obtain an overall 93% accuracy of the publication
year.

16This perspective borrows from the Finite Set Transducer which was developed in early attempts to automate
natural language translation.

17German Patent Gazette are available for download at the DPMA website.

https://register.dpma.de/DPMAregister/blattdownload/pat


2.2.4 Interoperability

We format the data into a ready-to-use database at the patent level with nested information.
The database full schema is reported in Appendix 2.8. Importantly, every patent entry in the
dataset is identified by its DOCDB publication number. A DOCDB publication number has
the following form: “CC-NNNNNN-KK” where CC is a two-letter country code, NNNNNN
the publication number, and KK the kind code. In addition to identification, the DOCDB
publication number also serves as the natural vehicle for interoperability with external datasets
including useful variables (e.g., technological class, citations, ...) that are consistently collected
by usual patent datasets.

We also harmonize the geographical information that we extracted. For each address, and
in addition to field presented in Table 2.5, we give the official administrative code for the
corresponding regions at different level. Specifically, we report the Nomenclature of Territorial
Units for Statistics (NUTS) level 1, 2 and 3 when applicable for Germany, France and Great
Britain, and the county code, Commuting Zone code and state code for the US.

2.2.5 Other data

Finally, we complement our dataset with external data to help the analysis. We first construct
estimates of the population at the most detail geographical level we could. That is county for
the United Kingdom (in fact, NUTS2 regions), Regierungsbezirke in Germany, (former) Régions
in France and county in the US. These estimates have been retrieve from backdating official
recent estimates with different studies, in particular Rosés and Wolf (2018); Eckert et al. (2020)
and sources (the INSEE, and Vision of Britain. See Appendix 2.8 for more details.

We also use information on trade flow, GDP per capita and standard “gravity” variables to
estimate a gravity equation model for innovation diffusion. These data are taken from the
CEPII geodist and Tradhist datasets (see Mayer and Zignago, 2011; Fouquin and Hugot, 2016)
and the Maddison project (Bolt and van Zanden, 2020).

In the remaining parts of the paper, we use our dataset to look at some specific questions related
to the long-run development of innovation. We first consider the concentration of innovation,
then look at the international collaborations and exchanges, we then turn to the nature of
inventors, and finally look at the role of migration. All these questions have been the subject
of a large literature, but again, mostly focused on the US. We review this literature and show
how our novel dataset can help to shed new light on these questions and highlight the difference
between the US and Europe when applicable.18

18Due to the small number of patents retrieved for East Germany, we do not systematically present results for
this patent office.

https://www.insee.fr/fr/information/2414405
https://www.visionofbritain.org.uk/


2.3 Concentration of innovation

It is well documented that the current geography of innovation is characterized by a very large
degree of spatial concentration, even more than production or population (see Feldman and
Kogler, 2010 for a review). This was already the case at the beginning of the 20th century in
the four countries that we study. Figure 2.55 in Appendix 2.8 shows that the Gini coefficient
of the number of patentees per region was around 0.6 in Germany and in the United Kingdom
and 0.8 in France and in the US, while the Gini coefficients of the level of population were
respectively equal to 0.3, 0.35, 0.4 and 0.6.19 This unequal distribution is partly driven by the
very large importance taken by a few hubs. For example, the region of Paris (Ile de France)
accounted for almost three-quarters of all domestic patentees during the first decade of the
20th century, but only 12% of the population. Similarly, during the same decade, Berlin and
(Inner) London accounted for 30% of domestic patentees and represented, respectively 7 and
12% of the total national population. In the US, Boston, Chicago and New York, the three
most innovative regions during the 1900-1910 decade totaled 25% of all domestic patentees and
11% of the population.

In all cases, these hubs played a detrimental role in fostering innovation but their relative
importance changed during the century. We report clear differences across the four countries.
In France and in the United Kingdom, the capital regions continued to host a very large number
of innovators until the 1980s, and to some extent even after this period in France. In Germany,
Berlin became less dominant after WW2 and the regions of Munich and Stuttgart progressively
rose as the largest innovative clusters. In the US, the 20th century first saw the development of
Chicago as a major innovative region and then, in a second time, the dramatic emergence of Los
Angeles and San Francisco as the most innovative areas by the end of the century. These different
developments lead to changes in the spatial distribution of innovation. France has remained
globally a mono-polar model even though the relative share of Ile-de-France dramatically fell
after World War II. Note that the dramatic fall of the relative share of Ile-de-France after
WW2 seems to reflect the publication postponing of patents filed before WW2 and immediately
followed by the emergence of the post WW2 Innovation landscape characterized by the rise of
Lyon in the French innovation landscape. The US returned to a high level of concentration at
the end of the 20th century following the rise as California. Only Germany has really switched
to a multipolar model with the emergence of several highly innovative regions and the gradual
disappearance of Berlin. The case of Great Britain is harder to interpret. The rapid fall in the
relative importance of London in the 1980s seems to reflect a change in administrative rules
rather than a realistic change in the concentration of innovative activities.

19These Gini coefficient have been computed using observation at the regional level, see next Section 2.3.1. The
average size of a region is different in the US and in European countries, which makes the comparison of the
absolute values of Gini coefficients tricky. However, the difference with the Gini coefficient on the distribution
of population remains comparable across countries.



2.3.1 Measure of concentration

One challenge associated with the measure of concentration over time is to find a consistent level
of geographical aggregation with limited border changes and information on innovation. This
is rather straightforward in the case of France where départements – the smallest geographical
unit at which we can localize patentee – have essentially not changed since the beginning of the
19th century. It is also natural in the US as county borders have undergone little modifications
and can be tracked over time.20 In the case of the United Kingdom and Germany, the problem
is more complex with multiple administrative changes. For these two countries, we exploit the
very high level of detail in the geographical information included in the patents to map postal
codes to present day boundaries using geographical crosswalk from the European Commission.

As explained in Section 2.2.5, our dataset proposes an harmonized geolocation of patentee at
three different administrative levels. The largest level corresponds to the NUTS 1 for European
countries and to the states for the US. The second level corresponds respectively to NUTS 2 and
to Commuting Zones (CZ) for the US and the third level to NUTS 3 and to counties. In this
section, we study the spatial distribution of patentees at the level of aggregation corresponding
to NUTS 2 and CZ. We can calculate standard statistics to measure the level of concentration
and its development over time. While the analysis could be extended to a finer level given
the granularity of the patent data, we limited to NUTS 2 and CZ as this allows us to use our
estimates of the local level of population.

2.3.2 Innovation hubs

To look at the development of local innovation hubs, Figure 2.1 reports the time series of the
relative share of all patents filed by domestic inventors in the top 10 regions (NUTS 2 and CZ)
for each of the four countries. We also report the cumulative share of the number of patentees
accounted for by the top 1, 3, 5 and 10 regions every year in Figure 2.3.

The results show some striking differences across countries. The United Kingdom and France
have an extremely concentrated location of innovation in their capital region (London and Paris)
up to 1980, while other hubs only account for a modest share of total innovation. The shares
accounted for by these two leading regions are very high and stable until the 1980s: about 40 and
80%, respectively, but then decline at the benefit of other regions (in particular the regions of
Lyon and Toulouse in France). The US exhibits a more complex pattern. First, no commuting
zones account for more than 20% of total patenting activities over the whole period. Second,
there is a progressive decline of the historical innovation hubs of the East Cost (New York and
Boston in particular), first in favor of Chicago during the first half of the 20th century, and then

20In particular thank to the work of Eckert et al. (2020). See also Perlman et al. (2016) and Bazzi et al. (2020)
for discussions on boarder changes in the US.

https://gisco-services.ec.europa.eu/tercet/flat-files


of California.21 As a result, the share of innovators located in the top regions increases from
the 1990s.

The concentration of innovation in Germany follows a different development. At the beginning
of the 20th century, the region of Berlin accounted for a large share of patentees – around
40%, similar to London– and this share remained before WW2. However, after WW2, the
relative importance of Berlin collapsed as the regions of Munich and Stuttgart (but also North
Westphalia) counted more and more patentees. This results in a clear declining trend in the
development of the cumulative share of patentees located in the top regions after WW2, a
pattern that only Germany experiences.

21The commuting zones of the San Francisco area (San Francisco-Oakland and San Jose) account for a growing
share of the total number of patentees after the end of the 1990s, but they are not included in the top 10 CZ
because over the whole period, their share is not one of the 10 largest. See Appendix 2.8 for a similar Figure
at the state level which shows the spectacular rise of California over time.



Figure 2.1: Share of patents in top 10 regions over time

(a) DE (b) FR

(c) GB (d) US

Notes: This reports the share of total patentees by regions (NUTS2 + CZ for the US) where the location of a patent
is given by the location of its patentees (whether inventors or assignees). The top 10 regions are selected based on the
number of years they belong to the top 10 over the whole period of observation. Data for 1946-1950 are not available for
Germany, data for 1970-1980 do not report any département level information for France.



Figure 2.3: Cumulative share of top regions

(a) DE (b) FR

(c) GB (d) US

Notes: This reports the total share of patentees (whether inventors or assignees) by regions (NUTS2 + CZ for the US)
accounted for by the top 1, 3, 5 and 10 regions. Top regions are selected each year and can therefore change over time.
Data for 1946-1950 are not available for Germany, data for 1970-1980 do not report any département level information for
France.

2.3.3 Change in the level of concentration

We have so far mostly looked at the top of the spatial distribution of innovation. This does not
fully inform about how unequal the overall distribution of innovating activities is, nor do they
inform about how this changes over time. One natural way to summarize the full distribution
is to calculate the Gini coefficient across all regions of a country every year. This is what is
done in Appendix 2.8 and in Andrews and Whalley (2021) in the case of the US since 1836.
However, this statistics has some limitations, especially for the US in the early period as many
regions have a low level of population and consequently a very small number of patents. We thus
consider an alternative metric: the Jensen-Shannon (JS) divergence between the distribution
of innovative activities and the population. Intuitively, this distance measures to what extend
the two distributions are different. Formally, the JS divergence between two distributions P of



population and Q of innovation can be calculated as:

JS(P , Q) =
1
2 (KL(P , M) + KL(Q, M)) where M =

1
2 (P + Q).

In this formula, KL(P , Q) is the Kullback-Leibler divergence over the set of regions Ω:

KL(P , Q) =
∑
ω∈Ω

P (ω) log
(

P (ω)

Q(ω)

)
.

The yearly value of JS(P , Q) for each country is reported in Figure 2.5. To the extent that the
JS divergence measures how much the distribution of patentees differs from the distribution
of the population, we interpret an increase of its value as evidence of a larger concentration of
innovation activities after controlling for potential changes in the concentration of population.

Figure 2.5: Jensen-Shannon divergence between population and patenting

(a) DE (b) FR

(c) GB (d) US

Notes: The Jensen-Shannon divergence is computed for all patentees over the whole period of observation for each country.
No data are recorded for Germany during the period 1946-1949, data for 1970-1980 do not report any département level
information for France. Data for population are also missing for Germany before 1900.

The development of the concentration of patentees, as measured by the JS divergence, varies
across countries. For the US, we find a pattern that is consistent with Andrews and Whalley
(2021) and in particular a declining trend until the beginning of the 20th century, followed
by a period of concentration until WW2. After WW2, the level of concentration declined



progressively until the end of the 1990s. In Germany, the level of concentration has reduced
since WW2 following an increase during the 1930s. In the UK, the JS divergence increased
between 1900 and the mid 1970s. While London continue to be the home of a large but
constant share of patentees, population became less centralized during the same period. After
this decade, the level of concentration of innovation rapidly collapsed. France experienced a
similar trend, although the level of concentration was very high before the 1970s due to the
Paris area.

Given that the regional aggregation is not completely comparable across countries, it is not
possible to use the magnitude of the JS divergence to compare the level of concentration across
countries. However, taken together with the previous analysis, these results paint a consistent
picture of the development of the concentration of innovative activities. Patenting in France
and in the United Kingdom were both heavily concentration on their capital regions until the
1980s and progressively started to converge to a more even distribution. Germany and the
US have a less concentrated model with different clusters, at least since WW2, although the
growing importance of California for the past 20 years tend to reverse this trend.

These different long-run changes in the spatial distribution of innovation across countries have
many potential explanations. For example, in Germany, WW2 and its legacy reshaped the
organization of innovation due to war destruction, the division of the country during Cold War
and the brain drain of scientists to the US (see Fohlin, 2016). In the US and in the United
Kingdom, universities played an important role, and continue to do so, in spurring local private
innovation in the US (see e.g., Andrews, 2020b) while this is less the case in continental Europe
as shown by Owen-Smith et al. (2002) in the case of life science. This has naturally impacted the
location of inventors differently in the US and in the United Kingdom than it did in continental
Europe. In France, the break observed during the 1980s for Paris corresponds to the political will
to decentralize the country. Industrial policy is also an important driver, with the development
of local specialized clusters such as the region of Toulouse for aeronautics. Demonstrating the
causality of these and other factors on the geography of innovation is a critical exercise and we
hope that this new dataset will spur new research in this direction.

2.4 International flows

In the previous section, we have only considered domestic innovation and have ignored foreign
inventors and assignees. In this Section, we look at the international flow of innovation across
countries and over time. International transfers of technology are important drivers of long-term
growth and the literature has established that openness to international trade has indeed large
positive impacts in terms of productivity (Coe and Helpman, 1995; Keller and Yeaple, 2009).

There are many dimensions through which patent data can help identify technology spillovers
(see Eaton and Kortum, 1999; Guellec and de la Potterie, 2001; Keller, 2004 for a review).
For example, Jaffe and Trajtenberg (1999) used the network of patent citations to measure



international knowledge flows. A similar method is implemented by Aghion et al. (2021a) who
show that when firms export goods, they also export new ideas as evidenced by the increasing
flow of patent citations from the exporting destination.

In our data, we observe that patenting activities become increasingly international during a
period of 30 years following WW2. During this period, the share of foreign inventors and
assignees has increased in all countries. This dynamic is driven by large American, German,
and Japanese multinational groups, but also by increasing exchanges between nearby countries.

2.4.1 Foreign patentees

To explore these technological exchanges between pairs of countries using patent data, we look
at the country of residence of inventors and assignees and measure the relative importance of
each foreign country in Germany, France, Great-Britain and the US. To do so, we plot the yearly
number of patentees that report an address in a foreign country as a share of total patents. We
restrict to the top 10 countries in each case and present the results in Figure 2.7. In this figure, we
have considered all patentees regardless of whether they are defined as assignees or inventors,
we report the corresponding Figures for inventors and assignees separately in Appendix 2.8,
Figures 2.59 and 2.61 respectively.



Figure 2.7: Country of residence of assignees and inventors by patent offices

(a) DE (b) FR

(c) GB (d) US

Notes: This Figure reports the share of patentees by country of residence for each of the German, French, British and US
patent offices and for the top 10 countries in terms of average share over the period of observation. Patentees are selected
regardless on whether they are inventors or assignees

The shares plotted in Figures 2.7 can help identify international connections between pairs
of countries. A large share of foreign patentees from a country A patenting in a country B
could indicate either a technological similarity between A and B, or large knowledge exchanges
between the two countries. The results highlight different facts.

First, there is a clear domestic bias: domestic patentees represent the majority of patent ap-
plications on average over the 20th century and this domestic bias has experienced important
changes in time. In the US, the share of domestic patentees slowly declined from about 100%
to 90% until WW2. This decline then became more pronounced as more and more assignees
from Germany and Japan take a growing importance (as well as Korea at the very end of the
period22). France and the UK exhibit a similar trend: the share of domestic patentee is constant

22Note that China does not make the top 10 list in any patent office. This is because the number of Chinese
patentees only start to rise modestly at the end of the time period, but remains at a lower level than Japan or
Korea.



before WW2, declines during the 1950s-1960s and increases during the 1980s. In both case, the
rise and fall of German and US patentees in the second half of the 20th century explains most
of the dynamics. Germany also experienced a decline in the share of domestic patentees after
WW2, resulting from an increase in the number of Japanese and US patentees. Contrary to
the other 3 patent offices, the share of domestic inventors and assignees increased from 60% to
more than 80% during the first half of the century.

Second, the dynamics of domestic patenting changes in all countries after the 1980s. It stabilizes
in the US and in the United Kingdom, at a lower level than at the beginning of the century, and
increases in Germany and in France. This finding is consistent with the fact that the period
following WW2 was characterized by an economic catch-up of western European countries to
the world productivity leader. This catch-up dynamics was largely fueled by the adoption of
new technologies from the US. After the end of the 1970s, France, Germany and the United
Kingdom reached a similar productivity level than North America (see Bergeaud et al., 2016
for a quantitative illustration) and relied less on the adoption of these technologies.23

Third, the US, Japan, and Germany are the three countries that explain most of the dynamics
in foreign patenting after WW2. In the United Kingdom, US patentees even overtook domestic
patentees during the 1960s. This results from the spectacular increase of patenting from large
manufacturing multinationals such as IBM, Siemens, Bayer, and General Electric during the
1960s-1970s, and Sony, Canon and Mitsubishi during the 1980s. French and British top assignees
(Imperial Chemical Industries Limited, Thomson...) filed less patents in the US.

Fourth, the list of countries that patent the most in a given patent office seems to follow a type of
gravity law. For example, Belgium, a French-speaking country and France’s neighbor, is among
the list of top foreign applicants for France. Similarly, Netherlands, Austria and Switzerland
are all in the list for Germany.

2.4.2 Gravity

To check this last point more formally, we implemented simple gravity equations. Figure 2.9
shows that there is indeed a strong positive relationship between trade flows, as measured by
the sum of exports and imports between two countries and the number of patents filed by
one country in the other one’s patent office. This relationship has motivated us to estimate a
gravity equation replacing the flow of imports or export by the flow of patents. Formally, using
geographical and economic data on as many countries as possible over the whole 20th century,
we estimate the following model:

23The fact that the share of domestic inventors skyrocketed in France and to some extent in Germany and in
the United Kingdom after the 1980s could be explained by the development of defensive patenting by domestic
firms. Defensive patents are rarely filed abroad and mechanically decrease the share of foreign patentees.
Interestingly, the increase is less pronounced for inventors than for assignees, see Figures 2.59 and 2.61.



Ni,j,t = exp (αdi,j + βTi,j,t + γXi,j + νi,t + µj,t + εi,j,t). (2.1)

In equation (2.1), i denotes one of the four patent office, j any other country (about 150)
and t the year. Ni,j,t, the dependent variable is the number of patents filed in country i by
a patentee residing in country j during year t, di,j is the distance between the two countries
(in km and taken in log), Ti,j,t is the sum of export and import between the pair of countries
(also taken in log). Finally, Xi,j is a vector of time invariant country-pair binary characteristics
(same language, former colony) and νi,t and µj,t are sets of country-year fixed effects. These
are meant to capture any changes within country that could explain variations in the number
of patent applications (economic development, war, etc...). Results are presented in Table 2.6.
We estimate the parameters of equation (2.1) first by taking the logarithm24 in columns 1-3
and then using a Poisson regression in columns 4-6. In columns 1 and 4, we do not include ν

and µ and instead control for GDP per capita. In columns 2 and 5, we add the logarithm of the
total trade flow between the two countries. Finally, columns 3 and 6 estimate the full model.
In all cases, the effect of the distance is negative as expected. Similarly, speaking the same
language or being a former colony also increases the number of patent publications. We retain
an estimate of -0.2 for α, this implies that when the distance double (say moving from 1000
to 2000 km) the average number of patents declines by about 13%. The negative coefficient
on GDP per capita for country i, combined with the positive coefficient for GDP per capita in
country j suggests that patenting by foreign inventors is more frequent when the two countries
have similar levels of development.

24We accommodate for cases in which N = 0 by replacing log(N) by log(N + 1)



Figure 2.9: Correlation between patenting and trade flows

Notes: This Figure plot the correlation between the logarithm of trade exchanges, defined as the sum of export and import
between two countries i and j and the number of patents filed by a patentee residing in country j in country i’s patent
office. Countries i are either Germany, France, the UK or the US while countries j include 162 countries observed during
the year for which we can measure their GDP. Bins average the values of the x and y variables for each percentiles of the
x variable, separately for the four countries i. (i, t) and (j, t) fixed effects are additively included

To consider the possibility that the role of distance changed over time, we then allow α to vary
by decade and run our preferred specification (column 6 of Table 2.6). Results are presented
graphically in Figure 2.11a. We see that the negative effect of distance has been gradually
reduced following WW2 and is not distinguishable from 0 from the end of the 20th century.
This is consistent with the view that globalization has increased the incentives for assignees to
patent in other countries to commercialize their products. Consistently, Figure 2.11b present
an estimation in which the coefficient of the binary variable for speaking a common language is
allowed to vary by decade. We see that the effect of sharing a language became less important
after WW2 in explaining the flow of patents from one country to another.



Table 2.6: Gravity model

(1) (2) (3) (4) (5) (6)
OLS Poisson

Distance -0.192** -0.190** -0.234** -0.567*** -0.567*** -0.204***
(0.090) (0.089) (0.092) (0.069) (0.072) (0.046)

Same Language 0.312** 0.310** 0.415*** 0.268** 0.268** 0.407***
(0.125) (0.125) (0.138) (0.109) (0.110) (0.072)

Former Colony 0.507*** 0.504*** 0.475*** 0.263* 0.263* 0.197**
(0.104) (0.105) (0.120) (0.145) (0.146) (0.083)

GDP per capita country i (log) -0.643*** -0.657*** -1.344** -1.344**
(0.230) (0.229) (0.539) (0.537)

GDP per capita country j (log) 1.168*** 1.178*** 3.059*** 3.058***
(0.180) (0.181) (0.587) (0.577)

Trade Flow (T) 0.005 0.023** -0.000 0.068***
(0.006) (0.011) (0.017) (0.025)

R2 0.795 0.795 0.935
Observations 21,830 21,830 19,377 21,830 21,830 19,365

Notes: Estimation of parameters of equation (2.1). Distance is the number of kilometers between the centroid of a pair of
country (i, j). “Same Language” and “Former colony” are two binary variables equal to 1 if the two countries share a common
language (officially or de facto) and if country j was a former colony of country i respectively. Standard errors are clustered
by pair of countries i, j. In columns 1, 2, 4 and 5, i, j and t fixed effects are added while in columns 3 and 6, (i, t) and (j, t)
fixed effects are additively included . Countries i are either Germany, France, the UK or the US while countries j include 162
countries observed during the year for which we can measure their GDP. Columns 1-3 use an OLS estimation where the de-
pendent variable is the logarithm of 1 plus the number of patents filed in country i by patentees (either assignees or inventors)
located in country j. Columns 4-6 use a Poisson estimation.

Figure 2.10: Evolution of the marginal effect of distance and language

(a) Distance (b) Language

Notes: Figure 2.11a plots the estimated value of α from equation (2.1) when α is allowed to vary by decade. The model
is otherwise the same as in column 6 of Table 2.6. Figure 2.11b does the same for the coefficient on sharing a common
language.

2.5 Who are the inventors?

In this section, we explore what our data can say about the inventors themselves. We exploit
the information included in patent publications and document an important evolution in the
typical profile of an inventor over time. In Great-Britain, we report that inventors who defined
themselves as engineers increased from about 20% to more than 30% between 1895 and 1920.
During the same period, the share of inventors presented as manual workers declined from more



than 15% to less than 10%. A consistent pattern is found in Germany. We exploit the academic
title traditionally specified just before the name of the inventor (e.g. Dipl.-Ing. Marin Tomov,
see Appendix 2.8 for more details) and report that the share of inventors with a higher education
degree increases over time.

We then combine the detailed geographical location of inventors in British patent to look at
the correlation between the social and economic level of a neighborhood and the likelihood to
become an inventor using the example of the late 19th century London.

2.5.1 Occupation of inventors

Patents filed in the UK patent office at the beginning of the 20th century frequently report
the occupation of the inventor.25 This represents a new source of information to document the
professional activities of inventor and how this evolves over a 30 year window.

The denomination of occupation is free and as a result there is a very large number of distinct
entities in the data. These can be highly precise, as for example, “Watchmaker and Jeweller”,
“Cemetery mason” or “Artificial limb manufacturer”, or more vague like “Manufacturer” or
“Engineer”. The list of occupations covers a wide range of different skills. While the most
frequently reported occupation is “Engineer” the list also include a large amount of low skilled
occupations like “plumber”, “worker” or “clerk” and more unexpected occupations like “Artist”
or “professional mandolinist”. At the same time, some inventors also declare to be “landowners”
or “gentlemen”.

The most frequently reported occupation is engineer, or one of its derivative which is not sur-
prising. Even as far back as during the very beginning of the industrial revolution, Squicciarini
and Voigtländer (2015) have shown that human capital and upper-tail knowledge are important
drivers of productivity in the most innovative sectors. Perhaps more surprising is the fact that
workers in low-educated occupations can become inventor. However, this is in line with insight
from historians of innovation. For example, Meisenzahl and Mokyr (2011) and Kelly et al. (2014)
study the creation of new technologies in the end of the 18th century in England and emphasize
the role of a skilled labor force with talented manufacturers and craftsmen who were able to
adapt and adjust the equipment that they manipulate daily. Inventors in the present day are
on the contrary very unlikely to work in low-educated occupations as studied by Jones (2009)
and Bloom et al. (2020) who push the view that innovation becomes increasingly complicated
and demanding in terms of knowledge and education.

Figure 2.12 reports the share of patents with at least one inventor declaring an occupation
belonging to the following groups: engineer, manager, manual worker, and gentleman. We see
that the share of patents involving an engineer increases over the period 1895-1920 from about

25The reporting of occupations in British patent is not systematic, but is fairly frequent over the period 1894-1920
with on average 50%-60% of inventors declaring one occupation. See Figure 2.30 in Appendix 2.8.



20% to more than 30%, while at the same time, less patents involve at least one manual worker.
At the same time, although at a much lower level, the share of patents having at least an
inventor reporting “gentleman” as an occupation decreases from 4% to 2% the share of patents
with a manager increases from 2% to 5%.

Figure 2.12: Occupation of inventors in the United Kingdom

Notes: This Figure reports the share of patents involving at least one engineer (Has engineer), one manager (Has manager),
one manual worker (Has manual worker) or one gentleman (Has gentleman) in terms of the occupation of the inventor
reported in the text. Time period: 1894-1920.

The case of Germany

German patents (both East or West Germany) also offer a way to inform about the education
of inventors as the names of the patentees are preceded by an academic title, when applicable.
This includes the prefix “Dr.”, but goes far beyond, with many different possibilities like “Dipl-
Ing.”, “Phy. Dr.”, “Ing.”, . . . We consider the presence of these elements as indications that the
inventor has done some higher education. Figure 2.13 reports the share of patents where at
least one inventor reports an academic title: Doctor (Has Dr), Engineer (Has Ing), Diploma
(Has Dipl) and any the previous title (Has Higher Education). The time periods are restricted
to 1955-1980 for West Germany and 1965-1980 in the case of East Germany due to limited
reporting of inventors before those periods.

In both cases, Figure 2.13 shows that the share of patents involving an inventor reporting a
title that indicates some higher education increases after the 1970s from around 25% to 35%



in West Germany and from around 40% to 70% in East Germany. In addition, this increasing
share seems to be driven by inventors who report to be engineers or to have a diploma, rather
than doctors or professors whose relative importance has declined in time.

Figure 2.13: Share of inventors with an academic title in Germany

(a) West Germany (b) East Germany

Notes: This Figure reports the share of patents with at least one inventor declaring an academic title: Doctor (Has Dr),
Ingenior (Has Ing), Diploma (Has Dipl). We also define “Has Higher Degree” as the union of the previous variables. Time
period: 1958-1980 for West Germany and 1965-1980 for East Germany.

These results are, of course, only indicative, but they seem to testify to an evolution in the
way the creation of innovation has gradually evolved. Both British and German patents report
an increasing share of engineers, while at the same time, the share of invention with only one
inventor has declined in the UK from about 50% in the very beginning of the 20th century to 25%
just before WW2.26 In the US and in Great-Britain, the average number of inventors per patent
has increased, see Figure 2.63 in Appendix 2.8. Similarly, in all countries, the share of patent
with only one inventor have overall decreased over time (Figure 2.65). These results suggest
that the “architecture of innovation” has evolved from the model of a single person developing
her own idea to a more complex structure of R&D teams organized by large corporations or
laboratories (Lerner, 2012).

2.5.2 Innovation and poverty

The economic literature has recently focused on the socio-economic characteristics of inventors
and more generally scientists, with the underlying idea that if intrinsic talent is randomly
distributed in the population, then any group that is underrepresented among inventors (women,
blacks, families from disadvantaged backgrounds...) is evidence of a policy failure that results in
misallocation of resources (Hsieh et al., 2019). For example, Bell et al. (2019) study the lives of

26This statistics cannot be calculated for France and Germany as information on inventors are limited for these
two countries and it is difficult to distinguish the case of a single inventor innovation from the case of an
invention with one assignee and no inventor.



about one million inventors in the US and link them to their tax and school records to track them
from their birth. They find that exposure to innovation when young is an important predictor
of the probability to become an inventor and highlight a phenomenon of “lost Einsteins” or lost
“Marie Curies”. Using information on Finnish patents, Aghion et al. (2017) also look at the
socio-economic profile of inventors.

Looking precisely at the correlation between revenue and the likelihood of filing one patent
is typically done by matching the patent data to different vintage of the census (see Akcigit
et al., 2017c; Sarada et al., 2019). Unfortunately, to our knowledge, this matching approach
is impossible to replicate for European countries due to the lack of available historical census
data. Matching names and location to administrative data is in any case challenging because
of the high frequency of typos and imperfectly recognized entities, in particular for the oldest
documents.

British patents offer an alternative approach. Because the location of patentees is given with a
very high degree of precision, we can map inventors to the different neighborhoods of a given
city which are more or less privileged. We do this exercise for London thanks to the Maps
Descriptive of London Poverty (1898-9), also known as the “Booth Poverty Maps”. This set of
twelve maps represent the late 19th century London social cartography based on a large scale
survey organized by Charles Booth, a British ship owner and social researcher. Each street
(or even building in some areas) was assigned one of seven socio-economic categories ranging
from “Lowest class, vicious, semi-criminal” to “Wealthy. Upper-middle and Upper classes”. The
category of each street resulted from Booth and fellow researchers’ visits to households and the
differences in lifestyle and qualitative factors (food, clothing, shelter, and relative deprivation)
they could observe.

The Booth Poverty Maps have been digitized by Orford et al. (2002). The authors represent
each socio-economic class area by a set of coordinate points. We use this digitized map and
project the coordinates of the geocoded inventors’ location and use the k-nearest neighbors (with
k=3) algorithm to find the socio-economic class the inventor is most likely to belong to (based
on his address). We apply this method to the 3,107 inventors extracted from British patents
published between 1893 and 1903 (that is, at most 5 years away from the Booth survey) and
geolocalized within the Booth Poverty Map area with a high degree of precision (either “street”
or “house-number”). We then derive a measure of the socio-economic category of each inventor
from the address declared on the patents. Cross referencing these results with the share of the
population belonging to each of the categories at the time of the survey, we compute the odds
of being an inventor by socio-economic category.

Results are presented in Figure 2.15 (blue solid line). In line with findings on historical data
in the US (Akcigit et al., 2017c) or recent data in Finland (Aghion et al., 2017) who report an
important correlation between parental income and the probability to become an inventor, we
also clearly find that in late 19th century - early 20th London, innovators were under-represented
in disadvantaged neighborhoods. However, one striking additional finding is that the odds ratio



is larger among the category “Well to do”, the second richest than among the wealthiest category
“Wealthy”. We conjecture that this result is a feature of the British society at the end of the
Victorian era, with a large part of the wealthiest socio-economic group being composed of idle
land-owners.

To check this hypothesis, we replicate the exercise for the next decades in addition to the
baseline 1893-1902: 1903-1912, 1913-1922, 1923-1932 and 1933-1942. For all these periods, we
make the assumption that the geographic distribution of revenue remains the same as in the
early 20th century.27 The results are presented in Figure 2.15 (gray dashed lines) and show
that indeed, the wealthy category counts more and more inventors as we move forward in time.
In the decade 1933-1942, the relationship between wealth and the probability to become an
inventor is clearly convex, in line with results presented by Akcigit et al. (2017c); Aghion et al.
(2017); Bell et al. (2019) in other contexts.

27We stop in 1942 to avoid the risk of measurement error when attributing each neighborhood to one of the
category of the Booth Map based on the end of the 19th century. The persistence of the socio-economic
characteristics of a London neighborhood is likely to be affected by the reconstruction following the destruction
of WW2.



Figure 2.15: Booth Poverty Map and innovators

Notes: This Figure reports the odds ratio of innovator, defined as the share of inventor in each category divided by the
share of the population in the same category. Inventor localized in London in British patents from 1893 to 1902 (blue line).
The same exercise is then replicates for each following decades: 1903-1912, 1913-1922, 1923-1932 and 1933-1942.

2.6 Migration and innovation

The question on whether immigration has a positive impact on local innovation has received a
lot of attention in the recent literature (see e.g. Akcigit et al., 2017b; Arkolakis et al., 2020).
Most of existing studies use external data to identify immigrants, for example different vintages
of the US Census or registers of inventors. We take a complementary approach using the
information on citizenship included in the text of the patent publications in the US and in the
United Kingdom. We focus on two distinct subperiods (respectively 1920-1950 for the United
Kingdom and 1880-1925 for the US) for which we have direct information on the citizenship
and the location of some inventors28 which allows us to classify them as “immigrant”. Of course

28Not all patentees declare a citizenship even during these subperiods. Among the set of patentee that are
located in the United Kingdom, 87% report a citizenship for patents filed between 1920 and 1950. During the
period 1950-1980, around 20% of inventors filing a British patent did declare their citizenship. Nevertheless,
we decided not to consider this time span due to the small fraction of inventors concerned. For the US, this
share is around 37% between 1880 and 1925 but is closer to 45% after 1910 (see Appendix Figure 2.32).



this definition is only an indirect evidence that the inventor is indeed an immigrant, it could
well be that the inventor is just temporarily visiting a foreign country. However, one advantage
of this method is that it does not require to implement a complex matching to external data,
which is typically based on the name and location of inventors.

With these differences in mind, we looked more precisely at the evolution of migrant inventors
from different nationalities over the time period considered in the United Kingdom and in the
US. The composition of these nationalities obviously changes over time. In particular, a large
number of German citizens living in the United Kingdom patented during the 1930s, most likely
as a consequence of them fleeing the Nazi regime. We then show that these immigrant inventors
make different types of innovation than other native inventors. Not only do they specialize in
different technological field, but they also patent on average more novel innovation, although
the differences with other inventors tend to fade over time.

2.6.1 Share of immigrants in US and British patents

We find that between 4% and 5% of inventors who report an address in the US but are not
American.29 In the United Kingdom, this share is lower, between 1% and 2%, at any point
in time between 1920 and 1950. In Figure 2.18, we report this share every year for the two
countries. We can see that the US experienced a sizeable increase in the share of immigrants
during the 1910s. The United Kingdom experienced a similar upswing during the 1940 decade.

Figure 2.16: Share of immigrant inventors over time

(a) GB (b) US

Notes: The share of immigrant is computed as the ratio of the number of inventors who report a non-domestic citizenship
different over the number of inventors reporting a domestic address. Time periods: 1920-1950 (GBR) and 1880-1925 (USA).

Figure 2.59 reports the evolution of the composition of these immigrants by country of citizen-

29These numbers are lower than those reported by Akcigit et al. (2017b) and Arkolakis et al. (2020). This can
happen for two reasons. First, it could be that immigrant inventors under-report their citizenship compared to
US born inventors. Second, both Akcigit et al. (2017b) and Arkolakis et al. (2020) define an immigrant based
on the country of birth, while we consider citizenship at the time of patent publication. Part of the difference
might then come from inventors who acquired US citizenship but were foreign born, hence counted as non
immigrants in this paper but counted as immigrants in the two aforementioned papers.



ship for the 10 most frequent nationalities respectively in the United Kingdom and the US. As
expected, Europeans constituted the bulk of immigrant inventors (consistently between 70% and
90%) in the US. The share of British and German inventors alone represented close to 60% of
immigrant inventors in the late 19th century and gradually decreased to reach 40% in the 1920s.
In the United Kingdom the 1930s were marked by the massive migration of German inventors
(most likely pushed out by the Nazis) who represented up to 40% of immigrant inventors in
1940 while they were almost absent before 1930. Following the Anschluss and the subsequent
Poland invasion, the share of Austrian and Polish inventors rose up to close to 10%. Before this
decade, American and Swiss immigrants represented up to around 40% of immigrant inventors.

Figure 2.18: Share of immigrant inventors over time

(a) GB (b) US

Notes: The share of immigrant is computed as the ratio of the number of inventors who report a non-domestic citizenship
different over the number of inventors reporting a domestic address. Time periods: 1920-1950 (GBR) and 1880-1925 (USA).

2.6.2 Immigration and novelty

We now address the question of whether inventions from immigrant inventors differ from those
of domestic inventors. In particular, we want to know if immigrants tend to import more novel
ideas than what is produced by their domestic counterparts but also whether this difference in
the degree of novelty varies over time and countries. Recent studies on the role of immigrants
tend to show that migrants serve as a vehicle of new knowledge that is influenced by educational
and cultural differences (see e.g. Miguélez and Morrison, 2021). This was also the case in the
past.

To show this, for both countries, the US and the United Kingdom, we select the 5 most repre-
sented foreign citizenship and compute the share of patents that they file in each of the 1-letter
CPC code (A, B, C, D, E, F, G and H). We then calculate the ratio of this share by the similar
share for non-immigrant domestic inventors. This measure summarizes the specialization of a
given group of immigrants into a given technological field. A ratio larger than 1 means that the
corresponding technological class is overrepresented in the set of patents filed by the group of
immigrants. Results are presented in Table 2.7. They show that some groups of immigrants are
differently specialized than native inventors with some heterogeneity by citizenship. For exam-



ple, German inventors tend to patent more in chemistry while Polish inventors patent more in
Human Necessities (food, health, agriculture...). These results are mostly illustrative but show
that immigrant inventors are not similar to natives in the technology they typically specialized
in. They also indicate that migrant inventors tend to import their knowledge in some specific
field. Could this mean that these inventions are more novel?

Table 2.7: Specialization by CPC

United Kingdom United States

CPC code USA DEU CHE POL FRA GBR DEU AUT RUS SWE
A Human Necessities 0.9 0.9 0.5 2.1 1.3 0.7 0.8 1.1 1.4 0.9
B Performing Operations 1.2 0.9 0.4 0.6 1.1 0.8 0.8 0.9 0.8 0.9
C Chemistry 1.3 1.5 3.1 0.8 0.9 1.9 2.6 1.3 0.6 1.1
D Textiles 0.3 0.6 4.1 0.6 0.9 1.5 1.2 0.7 1.1 0.9
E Fixed Constructions 0.6 0.4 0.4 0.9 0.6 0.6 0.6 1.0 1.0 0.8
F Mechanical Engineering 0.7 0.8 1.0 0.8 0.8 1.0 0.9 0.9 0.8 1.1
G Physics 1.0 1.1 0.4 0.9 1.0 1.1 1.1 0.9 1.1 1.0
H Electricity 1.0 1.5 0.9 0.8 0.5 1.7 1.5 1.0 0.9 1.2

Notes: This table presents the ratio of the share of patents filed in each of the 8 CPC code by inventors of different citizenships, as
described in the patent publication filed in the UK patent office and the US patent office, by the similar share calculated by native
inventors. The ratio is calculated over the set of domestic inventors that declare a citizenship.

Measuring novelty

Measuring the novelty of an invention is non-trivial. Empirical economics defines novelty as the
dissimilarity (or inverse of similarity) of a given invention with the existing corpus of inventions
at the moment of its publication. In practice, recent research has favored text similarity mea-
sures to assess the degree of novelty of a patent. Immediately related to our work, Arkolakis et
al. (2020) use the “Term Frequency Backward Inverse Document Frequency” (TFBIDF) intro-
duced by Kelly et al. (2018) to study the novelty of immigrants’ patents. This measure captures
the extent to which the distribution of words used by a given patent differ from the words used
by the corpus of patents published before - typically in a 5-year single-sided window. Our ap-
proach is very similar, except that we do not use the TFBIDF. There are two main reasons for
that. First, TFBIDF relies on very large vectors. Each patent is represented by a vector of
the size of the word dictionary of the entire corpus of patents, which makes the computation
very demanding. Second and more fundamentally, in the context of TFBIDF, two patents are
considered similar, if and only if they use the exact same words - leaving no room for synonymy
or sentences close in meaning but using different wording. Since language is known to be highly
variational30 this is a major pitfall of this kind of textual similarity measures. To circumvent
this, we use the Google Patents embedding which is made publicly available by the Google

30e.g., “The President is at the Office” and “Joe Biden is at the White House” are two largely distinct ways to
say the exact same thing but these two sentences would have very low similarity scores using TFBIDF. The
intuition is that they have only very frequent words (“is”, “at”, “the”) in common and that common words
receive low weight in this similarity measure. Common words are even not considered in the case of the so-called
stop-words (here “at” and “the”).



Patents research team. This embedding builds on recent advances in NLP, specifically on the
WSABIE algorithm described in Weston et al. (2011). It addresses the two main limitations
of TFBIDF. First, each patent is represented by a dense vector of size 128 which makes them
handy to manipulate. Second, the text embedding is “learnt” with the objective of maximizing
the similarity of two patents having the same technological classes.

In this setting, the similarity between two patents is given by their dot products, which returns
a value between 0 and 1 – the larger the value the more similar the patents. Using this method-
ology, we can measure the novelty of any patent as the average dissimilarity (1 - similarity) of
this patent with respect to the corpus of patents published up to 5 years before its publication.
Furthermore, we consider three groups of patents: a group of random patents which can be
authored by either immigrants or non-immigrants – this is the group of patents that is used to
define the “average corpus”; a group of patents authored by immigrants only and a group of
patents authored by non-immigrants only. Once we have computed the novelty of all patents
in the last two groups, we use a simple OLS regression to determine the effect of being an
immigrant on patent novelty. Similarly to Arkolakis et al. (2020), we also introduce time, space
and industry fixed effects.31 We find that being an immigrant has indeed a positive and highly
significant effect on patent novelty in both the US and Great Britain (see Table 2.8).

Table 2.8: Patent novelty and migration

United Kingdom United States

Dummy Immigrant 0.0075*** 0.0058***

R2 0.07 0.28
N 10,065 84,649

Notes: OLS estimation results of a linear model in which the depen-
dent variable is the novelty of a patent and the regressor is a binary
variable set to 1 if the inventor reports a citizenship that is differ-
ent from its location. Column 1 uses British patents and column 2
uses US patents. Time span is respectively 1920-1950 and 1880-1925.
Regressions include additive decade, county (Great Britain) or state
(US) and technological class (CPC) fixed effects. Both coefficients
are significantly different from 0 at the 1% threshold.

The nature of immigration has changed in time, is this also the case for this “novelty premium”?
To check this, we apply the same approach but we run distinct regressions for each country and
decade. In both countries, the results are less unequivocal. We report the estimated coefficients
and the associated confidence interval at the 5% level in Figure 2.20. In Great Britain, the
effect of being an immigrant is no longer significant at the 5% level in the 1940s. In the US,
the additional novelty brought by immigrant is decreasing and its effect is indistinguishable
from 0 during the 1920s. We also observe variations in the magnitude of the estimated effect

31We use respectively the publication decade, the county (Great Britain) and state (US) and the 1 letter-CPC
class.



of immigrant on the measured novelty of inventions. As suggested by Arkolakis et al. (2020),
part of the explanation might come from structural changes in the average population of inven-
tors in terms of time spent since immigration, pre-immigration occupation or origins. Other
explanations could include institutions such as migration policy or the strength of pre-existing
international interactions between inventors32. Solving this question is undoubtedly a promising
research avenue on the way toward a deeper understanding of the relation between immigration
and innovation. We believe that exploring the difference between the US and other countries
could bring important insight in this direction.

Figure 2.20: Regression result by decade

(a) GBR (b) USA

Notes: Coefficients and 95% confidence intervals from an estimation of the same model as in Table 2.8 for each decade
with the OLS.

2.7 Conclusion

In this paper, we have presented a novel dataset constructed from an automated text analysis of
patent documents published in the German (including East German), French, British and US
patent offices. The data cover as many years as possible and include most of the 20th century,
and part of the 19th century. The information extracted from these publications offer a novel
opportunity to acquire a better understanding of the long-term determinants of innovation.
Our findings confirm the intuition that the long-run development of innovation activities, as
revealed by patents, in Europe and in the US are different, and vindicate the view to extend
historical datasets to embrace the actual heterogeneity characterizing the long-term dynamics
of innovation.

Our work could be prolonged in different directions. One natural improvement would be to
include more countries in the dataset. Patents have existed since the end of the 19th century in

32Note that the aforementioned results cannot be solely attributed to the fact that foreign-born inventors’ writing-
style is different from their US-born counterparts since embeddings are based on both text and technological
classes which are set externally.



many places that are important R&D actors: Japan, Sweden, Switzerland. . . The methodology
presented in this paper has been designed with the goal of reducing the required efforts to apply
it to new patent corpuses. We also hope that making the codebase open source will support a
collective data design and continuous improvement momentum. Combining our database and
future extensions with historical datasets also has the potential to foster our understanding of
the role of institutions on innovation. We see two particularly promising research directions:
the role of universities for local innovative activities in Europe vs in the US and the role of the
dense urban network connecting Western Europe largest cities in innovation diffusion.

2.8 Appendix

Selection of utility patents

Table 2.9: Granted utility patents

Patent office Time span (publication year) Kind code(s)
DD 1950-1992 A, A1, A3, B
DE 1877-2013 A1, B, B3, C, C1, D1
FR 1902-2013 A, A1, A5∗, B1∗

GB 1893-2013 A, B∗

US 1836-2013 A, B1∗, B2∗

Notes: The selected kind codes try to emulate the USPTO concept of “Granted Util-
ity Patent”. We restrict to the first publication or second publication without first
publication kind codes in order to avoid double counting issues. We exclude patent
applications and revised publications for the same reason. In the case of DD, we are
limited by the availability of raw patent images and therefore include all types of
publications. ∗ indicates that the kind-code is considered only after 1980. This can
be due to changes in the meaning of the kind-code or to its creation date.

Formats

Entities by country

In this Section, we detail the different types of entities matched for each country and what they
usually means.

United States In the case of the US, the inventors and assignees are clearly separated entities.
The inventor is the name of the person who conceived the invention while the assignee is the
entity (either a person, a firm, the government, a university...) who own the right of the patent.
US patents also give information on the citizenship of patentees. In the case of inventors, this is
the country of citizenship (e.g., “a citizen of the kingdom of Italy”) and in the case of assignee
the legal origin of the firm when applicable (“a company duly organized under the laws of New
Jersey”). Finally, the entity location gives the address of the inventor and assignee, usually at
the city level. For more details, see the Annotation guidelines for the US

https://cverluise.github.io/patentcity/US_ANNOTATION_GUIDELINES


Table 2.10: Publication number and patent format

Patent office Publication number (range) Format number
DD DD1 - DD123499 1
DD DD123500 - 2
DE DE1C - DE977922C 1
DE DE1000001B - 2
FR FR317502A - FR1569050A 1
FR FR1605567A - 2
GB GB189317126A - GB2000001A 1
GB GB2000001A - 2
US US1A - US1583766A 1
US US1583767A - US1920166A 2
US US1920167A - US3554066A 3
US US3554067A - 4

Notes: The structure of a patent document can change over time. We track
these changes and adapt the statistical model to each cases. The table shows the
different formats for each patent offices and the associated first and last patents
of each format.

Germany In the case of Germany, inventors are referred to as “Erfinder” and assignees as
“Anmelder”. Both entities can represent physical people while assignees can also be companies.
Most of the patents filed before the 1950s do not include any inventor. Although it is likely
that in that case, the inventor and the assignee can be the same person, we only label the
entity as inventor when the term “Erfinder” is explicitly mentioned. German patents also give
some information on the occupation of inventors or assignees from the denomination of their
academic title (e.g., “Dr.”, “Ing.” or “Pr.”). Finally, the location is usually given by the city of
the inventor or assignee. For more details, see the Annotation guidelines for Germany and the
specific guidelines for East-Germany

France The case of France is similar to the case of Germany regarding inventors and assignees.
Most of the patents have a “déposant” which we label as assignee while some patents also
have an “inventeur” which we label as inventor. French patents do not give information on
occupation or citizenship, except if extremely rare instances. The location is given at the
county (“département” level in the case of a patentee located in France and at the country level
for foreign inventors. For more details, see the Annotation guidelines for France

United Kingdom In the British case, the inventor and the assignees are not explicitly distin-
guishable. By convention, we denote each firm by an assignee and each person as an inventor.
The British patents also include information on the occupation of the inventor, and in some
case on the occupation of the assignee (e.g., “a clock manufacturing company”). Information
on the citizenship of inventor and assignee are also provided like in the US. Finally, the location
of the assignee and of the inventor is given as a full postal address. For more details, see the
Annotation guidelines for British patents.

https://cverluise.github.io/patentcity/DE_ANNOTATION_GUIDELINES
https://cverluise.github.io/patentcity/DD_ANNOTATION_GUIDELINES
https://cverluise.github.io/patentcity/DD_ANNOTATION_GUIDELINES
https://cverluise.github.io/patentcity/FR_ANNOTATION_GUIDELINES
https://cverluise.github.io/patentcity/GB_ANNOTATION_GUIDELINES


Data coverage

Figure 2.22: Share of patents with at least one inventor

(a) DD (b) DE

(c) FR (d) GB

(e) US



Figure 2.24: Share of patents with at least one assignee

(a) DD (b) DE

(c) FR (d) GB

(e) US



Figure 2.26: Share of patents with at least one location

(a) DD (b) DE

(c) FR (d) GB

(e) US



Figure 2.28: Share of patentees with a detected location

(a) DD (b) DE

(c) FR (d) GB

(e) US



Figure 2.30: Share of inventors with a detected occupation

(a) DD (b) DE

(c) GB

Figure 2.32: Share of inventors with a detected citizenship

(a) GB (b) US



Figure 2.34: Composition of the most detailed level of geocoding

(a) DD (b) DE

(c) FR (d) GB

(e) US



Figure 2.36: Composition of geocoding by geocoding source

(a) DD (b) DE

(c) FR (d) GB

(e) US



Figure 2.38: Database composition by source (number of patents)

(a) DD (b) DE

(c) FR (d) GB

(e) US

Notes: PC refers to PatentCity data, WGP refers to de Rassenfosse et al. (2019c) data and EXP refers to data collected
from family expansion from patents included in either PC or WGP.



Figure 2.40: Database composition by source (in share)

(a) DD (b) DE

(c) FR (d) GB

(e) US

Notes: PC refers to PatentCity data, WGP refers to de Rassenfosse et al. (2019c) data and EXP refers to data collected
from family expansion from patents included in either PC or WGP.



Figure 2.42: Database coverage by office and publication year (in absolute values)

(a) DD (b) DE

(c) FR (d) GB

(e) US



Figure 2.44: Database coverage by office and publication year (in share of the Claims database
coverage

(a) DD (b) DE

(c) FR (d) GB

(e) US

Notes: We report the share of patents which are reported in our database at the office-publication year level as compared
to the coverage of the IFI Claims database (publicly available as part of the Google patents public dataset). Shaded areas
correspond to office and publication years where patents reported in the IFI Claims database miss dates, meaning that we
miss a proper denominator.



Additional annotation guidelines

Table 2.11: Entity annotation guidelines

Patent
office

Entity Content Example

ASG Assignee full name Inhaber: Rhône Poulenc S.A , Paris
(Frankreich).

DD INV Inventor full name (Erfinder) Erfinder: Dr. Karl Jellinek , WD
LOC Location of the assignee/inventor Erfinder: Jean Auguste Phelisse, Lyon

(Frankreich).
OCC Occupation of the assignee/inventor

(academic title)
Dr. Elisabeth Kob, WD.

ASG Assignee full name ANTON KLEBER in SAAR-
BRUCKEN

INV Inventor full name (Erfinder) Frutz Doring , Berlin-Frohnau ist als
Erfinder genannt worden

DE LOC Location of the assignee/inventor Demag Akt-Ges. in Duisburg.
OCC Occupation of the assignee/inventor

(academic title)
Dipl-Ing Georg Werner Gaze, Ingol-
stadt

CLAS Technological class (German system) KLASSE 49h GRUPPE 27 D
16736VI/49h

ASG Assignee full name M. Robert John Jocelyn SWAN rési-
dant en Angleterre

FR INV Inventor full name (Demande de brevet déposée aux Etats-
Unis d’Amérique au nom de M. Ladislas
Charles MATSCH )

LOC Location of the assignee/inventor M. Louis LEGRAND résidant en
France.

CLAS Technological class (French system) XII Instruments de précision 3 POIDS
ET MESURES, INSTRUMENTS DE
MATHEMMATIQUES

PERS Person full name Maxim Hanson Hersey , Lighting Engi-
neer

ORG Firm full name We, The Convex Incandescent Mantle
Company Limited , Manufacturers

GB CIT The origin of the firm or citizenship of
the person

a subject of the king of Great Britain
and Ireland ,

LOC Location of the person/firm Maxim Hanson Hersey, Lighting Engi-
neer, of 145, Bethune Road, Amhurst
Park, London N..

OCC Occupation of the person Maxim Hanson Hersey, Lighting Engi-
neer .

INV Inventor full name Be it known that I, JAMES M. GAR-
DINER , ...

US ASG Assignee full name ASSIGNOR OF ONE-HALF TO
SMITH FULMER

LOC Location of the assignee/inventor residing at Mikkalo, in the county of
Gilliam and State of Oregon

CIT Citizenship of inventor JOHN SCHLATTER, a citizen of
United States

Notes: Colored text corresponds to the entities that we seek to extract: red for inventors, purple for assignees, olive
for locations, brown for citizenship and blue for occupations. Full annotation guidelines available at https://cverluise.
github.io/patentcity/ (section Guides).

https://cverluise.github.io/patentcity/
https://cverluise.github.io/patentcity/


Table 2.12: Relation annotation guidelines

Patent office Relation Content E.g

DD LOCATION Links an ASG/INV to a LOC Rhône Poulenc S.A−→LOCATION−→Paris
(Frankreich)

OCCUPATION Links an ASG/INV to an OCC Dr←−OCCUPATION←−Elisabeth Kob
DE LOCATION Links an ASG/INV to a LOC MARIUS ALBERT de

DION−→LOCATION−→PUTEAUX (Seine,
Frankr.)

OCCUPATION Links an ASG/INV to an OCC Dr.←−OCCUPATION←−KARL HENKEL
FR LOCATION Links an ASG/INV to a LOC M.Frederic PERDRIZET−→LOCATION−→

France (Gironde)
CITIZENSHIP Links an ORG/PERS to its CIT Maxim Hanson

Hersey−→CITIZENSHIP−→subject of
the king of Great Britain and Ireland

GB LOCATION Links an ASG/INV to a LOC Maxim Hanson
Hersey−→LOCATION−→145, Bethune
Road, Amhurst Park, London N.

OCCUPATION Links an ASG/INV to an OCC Maxim Hanson
Hersey−→OCCUPATION−→Lighting Engi-
neer

CITIZENSHIP Links an INV/ASG to its CIT WILLIAM H. BAKER−→CITIZENSHIP−→citizen
of the United States

US LOCATION Links an ASG/INV to a LOC SEDWARD WILLIAM
YOUNG−→LOCATION−→Tytherley, Wim-
borne, Dorset, England

Notes: Examples of relations between extracted entities for each patent office. Colored text corresponds to the entities extracted: red for
personal inventors, purple for assignees, olive for locations, brown for citizenship and blue for occupations.



Overview of the dataset



Table 2.13: Database schema

Name Description Type Nb non null
publication_number Publication number. STR 18,626,068
publication_date Publication date (yyyymmdd). INT 18,625,367
family_id Family ID (DOCDB). STR 18,625,353
country_code Country code of the patent office. STR 18,626,068
pubnum Publication number. STR 18,626,068
kind_code Kind code. STR 18,626,068
origin Indicates the origin of the paten-

tee data (PC: patentcity, WGP25:
Worldwide Geocoding of Patent
- slot 25, WGP45: Worldwide
Geocoding of Patent - slot 45, EXP:
expansion ).

STR 18,626,068

patentee Patentee REC 18,626,068
__.is_inv True if the patentee is an inventor,

else False.
BOOL 45,537,241

__.is_asg True if the patentee is an assignee,
else False.

BOOL 45,537,241

__.name_text Name. STR 43,402,865
__.person_id Person ID (PATSTAT). INT 23,763,520
__.name_start Name start. INT 19,639,345
__.name_end Name end. INT 19,639,345
__.occ_text Occupation text. STR 1,354,930
__.occ_start Occupation start. INT 1,354,930
__.occ_end Occupation end. INT 1,354,930
__.cit_text Citizenship text. STR 3,996,958
__.cit_code Citizenship code. STR 3,861,775
__.cit_start Citizenship start. INT 3,996,958
__.cit_end Citizenship end. INT 3,996,958
__.loc_text Location text. STR 42,232,737
__.loc_start Location start. INT 16,334,841
__.loc_end Location end. INT 16,334,841
__.loc_addressLines Formatted address lines built out of

the parsed address components.
STR 16,003,816

__.loc_locationLabel Assembled address value for display-
ing purposes.

STR 41,901,699

__.loc_country ISO 3166-alpha-3 country code. STR 41,898,330
Continued on next page



__.loc_state First subdivision level(s) below the
country. Where commonly used,
this is a state code (for instance, CA
for California).

STR 41,428,298

__.loc_county Second subdivision level(s) below
the country. Use of this field is op-
tional if a second subdivision level is
not available.

STR 34,200,971

__.loc_city Locality of the address. STR 40,391,684
__.loc_district Subdivision level below the city. Use

of this field is optional if a second
subdivision level is not available.

STR 18,276,320

__.loc_subdistrict Subdivision level below the district.
Used only for India.

STR 16,003,816

__.loc_postalCode Postal code. STR 23,837,493
__.loc_street Street name. STR 18,145,660
__.loc_building Building name. STR 16,130,485
__.loc_houseNumber House number. STR 17,710,245
__.loc_longitude Longitude. FLOA 41,517,796
__.loc_latitude Latitude. FLOA 41,517,796
__.loc_relevance Indicates the relevance of the results

found; the higher the score the more
relevant the alternative. The score
is a normalized value between 0 and
1.

FLOA 12,203,353

__.loc_matchType Quality of the location match.
pointAddress: Location matches ex-
actly as point address. interpolated:
Location was interpolated.

STR 41,268,017

__.loc_matchCode Code indicating how well the re-
sult matches the request. Enumer-
ation [exact, ambiguous, upHierar-
chy, ambiguousUpHierarchy].

STR 16,003,816

__.loc_matchLevel The most detailed address field that
matched the input record.

STR 41,643,215

Continued on next page



__.loc_matchQualityCountry MatchQuality provides detailed in-
formation about the match quality
of a result at attribute level. Match
quality is a value between 0.0 and
1.0. 1.0 represents a 100% match.
Here, matchQuality is defined at
country level.

FLOA 2,658,311

__.loc_matchQualityState Same at state level. FLOA 6,553,671
__.loc_matchQualityCounty Same at county level. FLOA 1,547,347
__.loc_matchQualityCity Same at city level. FLOA 11,331,772
__.loc_matchQualityDistrict Same at district level. FLOA 1,361,402
__.loc_matchQualityPostalCode Same at postalCode level. FLOA 147,862
__.loc_matchQualityStreet Same at street level. FLOA 2,452,802
__.loc_matchQualityHouseNumber Same at houseNumber level. FLOA 1,034,844
__.loc_matchQualityBuilding Same at building level. FLOA 410
__.loc_key Key used for statistical area map-

ping (internal use).
STR 31,137,221

__.loc_statisticalArea1 Name of the high level Statistical
Area.

STR 31,061,188

__.loc_statisticalArea1Code Code of the high level Statistical
Area.

STR 31,061,188

__.loc_statisticalArea2 Name of the mid level Statistical
Area.

STR 31,061,165

__.loc_statisticalArea2Code Code of the mid level Statistical
Area.

STR 19,738,673

__.loc_statisticalArea3 Name of the low level Statistical
Area.

STR 31,055,300

__.loc_statisticalArea3Code Code of the low level Statistical
Area.

STR 31,067,057

__.loc_recId Identifier of the input address in the
response.

STR 42,232,737

__.loc_seqLength Number of results for the corre-
sponding input record.

INT 12,244,380

__.loc_seqNumber Consecutively numbers the different
results for the corresponding input
record starting with 1.

INT 29,657,332

__.loc_source Geocoding source (in [HERE,
GMAPS, MANUAL]).

STR 41,901,712

Continued on next page



__.is_duplicate True if a patentee with the ’same’
name has been detected in the same
patent. Only one of the two is
marked as duplicate.

BOOL 3,985,815

Notes: Variable names prefixed by a «__.» are nested variables. For example, «__.is_inv» is nested in the «patentee» variable.



Pipeline



Figure 2.46: Workflow pipeline

2.46.

õ Non US full-text patent images õ US full-text patent images

f Web scraping

f Optical Character Recognition

õ Digitized full-text patent

õ Random sample

f Manual annotations

õ Test õ Train + Hyperparameters

f Model training

f Performance eval õ Trained model

õ Structured patentees’ data

f Geocoding

f Citizenship disambiguation

f Missing data imputation

õ Structured and enriched data
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Other data

Population by region

We construct population data at regional level using official sources for the most recent period
from as long as possible. The data are constructed at different levels and then aggregated
at the NUTS2 (or Commuting Zone for the US) level when necessary. These levels are re-
spectively: Government regions (Regierungsbezirke) for Germany (NUTS 2), Départements for
France (NUTS 3), county or equivalent for the United Kingdom (NUTS 2) and county for the
US.

These official sources used as a benchmark are respectively Eurostat for Germany, the INSEE
for France, the ONS for the United Kingdom and the Census Bureau’s Population Estimates
for the US. They are then completed by historical sources namely from Rosés and Wolf (2018)
and Eckert et al. (2020). Details on the assumptions made to construct these estimates are
reported in the project’s website.

https://cverluise.github.io/patentcity/ASSETS_POPULATION/


Gravity variables

The analysis presented in Section 2.4 use country specific variables such as GDP per capita and
country to country bilateral variables like trade flow (imports and exports), distance and other
standard gravity variables.

We use the following sources:

• GDP per capita comes from Bolt and van Zanden (2020)

• Distance between pairs of countries, dummy variable for being a former colony and sharing
a same language comes from Mayer and Zignago (2011)

• Trade flows comes from Fouquin and Hugot (2016)

We have restricted the sample to countries and year for which we can measure GDP per capita,
which represent 165 countries. The country of origin is one of the four countries considered in
the analysis (France, Germany, the United Kingdom and the US). More details can be found
in project’s website.

https://cverluise.github.io/patentcity/ASSETS_GRAVITY/


Additional results for Section 2.3

Top regions for inventors

Figure 2.47: Share of patents in top 10 regions over time - inventors only

(a) DE (b) FR

(c) GB (d) US

Notes: This reports the share of total patentees by regions (NUTS2 + CZ for the US) where the location of a patent is
given by the location of its inventors. The top 10 regions are selected based on the number of years they belong to the
top 10 over the whole period of observation. Data for 1946-1950 are not available for Germany, data for 1970-1980 do not
report any département level information for France.



Top regions for assignees

Figure 2.49: Share of patents in top 10 regions over time - assignees only

(a) DE (b) FR

(c) GB (d) US

Notes: This reports the share of total patentees by regions (NUTS2 + CZ for the US) where the location of a patent is
given by the location of its assignees. The top 10 regions are selected based on the number of years they belong to the
top 10 over the whole period of observation. Data for 1946-1950 are not available for Germany, data for 1970-1980 do not
report any département level information for France.



Top regions at a more aggregated level

Figure 2.51: Share of patents in top 10 regions over time - larger regional level

(a) DE (b) FR

(c) GB (d) US

Notes: This reports the share of total patentees by larger regions (NUTS1 + state for the US) where the location of a
patent is given by the location of its patentees. The top 10 regions are selected based on the number of years they belong
to the top 10 over the whole period of observation. Data for 1946-1950 are not available for Germany, data for 1970-1980
do not report any département level information for France.



Gini coefficient

Figure 2.53: Gini coefficient of the distribution of patents

(a) DE (b) FR

(c) GB (d) US

Notes: This reports the Gini coefficient on the distribution of number of patents per regions (NUTS2 + CZ for the US)
where the location of a patent is given by the location of its patentees. Data for 1946-1950 are not available for Germany,
data for 1970-1980 do not report any département level information for France.



Figure 2.55: Gini coefficient of the distribution of patents per capita

(a) DE (b) FR

(c) GB (d) US

Notes: This reports the Gini coefficient on the distribution of number of patents per capita per regions (NUTS2 + CZ for
the US) where the location of a patent is given by the location of its patentees. Data for 1946-1950 are not available for
Germany, data for 1970-1980 do not report any département level information for France.



Figure 2.57: Gini coefficient of the distribution of population

(a) DE (b) FR

(c) GB (d) US

Notes: This reports the Gini coefficient on the distribution of population per regions (NUTS2 + CZ for the US).



Robustness Figure for Section 2.4

Figure 2.59: Country of residence of inventors by patent offices

(a) DE (b) FR

(c) GB (d) US

Notes: This Figure reports the share of inventors by country of residence for each of the German, French, British and US
patent offices and for the top 10 countries in terms of average share over the period of observation.



Figure 2.61: Country of residence of assignees by patent offices

(a) DE (b) FR

(c) GB (d) US

Notes: This Figure reports the share of assignees by country of residence for each of the German, French, British and US
patent offices and for the top 10 countries in terms of average share over the period of observation.



Robustness Figure for Section 2.5

Figure 2.63: Average number of inventors per patent

(a) DE (b) FR

(c) GB (d) US

Notes: This Figure reports the average number of inventors per patent.



Figure 2.65: Share of patent with only one inventor

(a) DE (b) FR

(c) GB (d) US

Notes: This Figure reports the share of patents with only one inventor.



Maps by decade

Figure 2.67: Patentees location counts in DE (by level 2 statistical area)

1870 1880 1890

1900 1910 1920

1930 1940 1950

1960 1970 1980

1990 2000

Notes: The warmer, the more patentees (inventors and assignees) are located in a given statistical area (relative to other
domestic statistical areas).



Figure 2.69: Patentees location counts in FR (by level 2 statistical area)

1900 1910 1920

1930 1940 1950

1960 1970 1980

1990 2000

Notes: The warmer, the more patentees (inventors and assignees) are located in a given statistical area (relative to other
domestic statistical areas).



Figure 2.71: Patentees location counts in GB (by level 2 statistical area)

1900 1910 1920

1930 1940 1950

1960 1970 1980

1990 2000

Notes: The warmer, the more patentees (inventors and assignees) are located in a given statistical area (relative to other
domestic statistical areas).



Figure 2.73: Patentees location counts in US (by level 2 statistical area)

1830 1840 1850

1860 1870 1880

1890 1900 1910

1920 1930 1940

1950 1960 1970

1980 1990 2000

Notes: The warmer, the more patentees (inventors and assignees) are located in a given statistical area (relative to other
domestic statistical areas).



Table 2.14: Models’ performance by format in DD

Format Metric ALL ASG INV LOC OCC
p 0.99 0.99 0.96 0.99 0.99

1 r 0.99 0.99 0.96 0.99 1
f 0.99 0.99 0.96 0.99 0.99
p 0.95 0.94 0.95 0.98 0.94

2 r 0.94 0.87 0.97 0.95 0.94
f 0.95 0.91 0.96 0.96 0.94

Notes: Reported performance metrics were computed on the test
set - unseen during training. The "Format" column indicates the
different models used for the office. For the German office, there
was a major shift in the patent information display in 1881 forcing
us to train two different models. Performance metrics are reported
as follows: precision/recall/F1-score.

Table 2.15: Models’ performance by format in DE

Format Metric ALL ASG CLAS INV LOC OCC
p 0.99 0.98 0.99 0.99 1 0.97

1 r 0.99 0.99 1 0.96 1 0.98
f 0.99 0.98 1 0.98 1 0.97
p 0.99 0.99 0.99 0.98 0.99 0.97

2 r 0.98 0.98 1 0.99 0.98 0.97
f 0.98 0.98 0.99 0.99 0.98 0.97

Notes: Reported performance metrics were computed on the test set - unseen
during training. The "Format" column indicates the different models used for
the office. Performance metrics are reported as follows: precision/recall/F1-
score.

Models’ performance

Table 2.16: Models’ performance by format in FR

Format Metric ALL ASG CLAS INV LOC
p 0.97 0.99 0.93 0.99 0.99

1 r 0.97 0.99 0.93 1 0.99
f 0.97 0.99 0.93 0.99 0.99
p 0.98 0.98 - 0.99 0.99

2 r 0.98 0.98 - 0.98 0.99
f 0.98 0.98 - 0.98 0.99

Notes: Reported performance metrics were computed on the test
set - unseen during training. The "Format" column indicates the dif-
ferent models used for the office. Performance metrics are reported
as follows: precision/recall/F1-score.



Table 2.17: Models’ performance by format in GB

Format Metric ALL ASG CIT INV LOC OCC
p 0.93 0.93 0.96 0.95 0.92 0.9

1 r 0.94 0.92 0.96 0.96 0.92 0.86
f 0.94 0.93 0.96 0.96 0.92 0.88

Notes: Reported performance metrics were computed on the test set - un-
seen during training. For GB, only one model is used. Performance metrics
are reported as follows: precision/recall/F1-score.

Table 2.18: Models’ performance by format in US

Format Metric ALL ASG CIT INV LOC
p 0.98 0.94 0.98 1 0.98

1 r 0.99 0.96 0.98 0.99 0.99
f 0.99 0.95 0.98 0.99 0.99
p 0.98 0.96 0.98 1 0.98

2 r 0.99 0.96 0.97 1 0.99
f 0.98 0.96 0.98 1 0.99
p 0.97 0.96 0.97 0.99 0.97

3 r 0.97 0.96 0.97 0.98 0.98
f 0.97 0.96 0.97 0.98 0.98
p 0.99 0.99 - 1 0.99

4 r 0.99 0.98 - 1 0.99
f 0.99 0.98 - 1 0.99

Notes: Reported performance metrics were computed on the test
set - unseen during training. The "Format" column indicates the
different models used for the office. Performance metrics are re-
ported as follows: precision/recall/F1-score.
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Abstract

We use patent data to study the contribution of the US, Europe, China and Japan to frontier
technology. To do so, we extend the nascent automated patent landscaping approach. We
show that our method generates both accurate and robust results. We find that China’s
contribution to frontier technology has become quantitatively similar to the US in the late 2010s
while overcoming the European and Japanese contributions respectively. Although China still
exhibits the stigmas of a catching up economy, these stigmas are on the downside. The quality
of frontier technology patents published at the Chinese Patent Office has leveled up to the
quality of patents published at the European and Japanese patent offices. At the same time,
frontier technology patenting at the Chinese Patent Office seems to have been increasingly
supported by domestic patentees, suggesting the build up of domestic capabilities.
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3.1 Introduction

Modern growth theory (Romer, 1990; Aghion and Howitt, 1992b) acknowledges the central role
of technological progress in driving long-run economic growth. Yet, the nature of technological
progress depends to each country’s level of development (Acemoglu et al., 2006). Developing
countries typically progressively catch up with frontier economies by making incremental ad-
justments to technologies previously developed in the latter. As they get closer to advanced
economies, growth requires frontier innovation which in turn calls for institutional transforma-
tions that include competition policy (Zilibotti, 2017), research education (Vandenbussche et
al., 2006; Aghion et al., 2009, 2010), external finance (Diallo and Koch, 2018), and improved
management practices (Bloom and Van Reenen, 2007)... Failure to implement a favorable set
of institutions to support frontier innovation has shown to be an obstacle to full economic con-
vergence and to maintain developing countries in a “middle-income trap”. A country’s capacity
to generate frontier innovation is key for developing countries to join the developed countries
club and for developed countries to remain in this club.

Despite the central piece that frontier innovation takes in growth theory, the empirical char-
acterisation of the diffusion of novel technologies remain an empirical challenge. Economists
usually rely on patent data to study innovation, but patents do not come with immediate ways
to distinguish between catch up innovation – or improvements of well-established technologies
– and the development of new frontier technologies, all the more when comparing different
countries. In particular, the now well-known and documented dramatic increase in patenting in
China (in 2019, the Chinese Patent Office filed 1.4 million patents, that is 43% percent of the
world’s total applications) is hard to relate to the actual contribution of China to pushing the
world’s frontier. By deploying a set of new statistical methods to the patent corpus, our work
is an attempt to address this question.

From a methodological point of view, researchers might be tempted to use standard technological
classes attributed by patent offices to patents in order to delineate patents contributing to a
given technology and study frontier innovation. However, the economic literature has long
prevented scholars from doing so. Griliches (1990) famously called this question “the patent
classification problem”. Indeed, the purpose of patent offices’ classifications is to ease the search
of prior art. Resulting classifications are thus based on techniques, which are not necessarily
related to the economists’ notion of technology. Schmookler (1966) reports that a subclass
related to the dispensing of solids contained patents on both manure spreaders and toothpaste
tubes.

In this context, this paper introduces a new methodological approach. We extend the automated
patent landscaping literature to accurately and consistently delineate a large set of frontier tech-
nologies from the worldwide corpus of patents. Specifically, we extend the algorithm pioneered
by Abood and Feltenberger (2018). This algorithm implements a sequence of machine learning
operations to emulate human curation at scale. We add a tractable amount of human super-
vision in the loop in order to improve both accuracy and consistency of our results. We call
this approach “automated patent landscaping with humans in the loop”. We then apply it to
six novel and representative technologies: additive manufacturing, blockchain, computer vision,



genome editing, hydrogen storage and self-driving vehicles. These technologies were carefully
selected to both cover a large variety of economic sectors and ensure conceptual homogeneity.

In line with our initial question, our approach allows us to study specifically the role and
contribution of any country with a patent system in the production of frontier innovation. For
the sake of simplicity, in this paper we restrict our attention to three regions that we refer to
as “the Triad” (United States, Europe and Japan) and to China which are at the epicentre of
frontier technology patenting. All these technologies, although very different in nature, deliver
a surprisingly consistent and clear picture. The quantitative contribution of the Chinese Patent
office to frontier innovation patenting has been rapidly rising since the early 2000s. China
has become the second largest actor of frontier innovation and is quickly catching up with the
US. Our results suggest that, although it still exhibits stigmas of a catching up economy, these
stigmas are on the downside. The quality of frontier technology patents published at the Chinese
Patent Office has been increasing since the 2000s. By the end of the 2010s, it had reached the
quality level of patents published at the European and Japanese patent offices. During the same
period, frontier technology patenting in China seems to have been increasingly supported by
domestic patentees, suggesting the build up of domestic capabilities.

Literature review

Our paper contributes to different strands of the literature.

First, there are a number of papers that measure the rise of China as a new technological power
and explore potential explanations. This literature typically reports that China is an important
player, if not the leader, in terms of many indicators of innovativeness. China concentrated 159
unicorn companies in 2021 according to CB Insight for a total valuation of more than 500 billion
dollars.1 This is much more than Europe (89 for a valuation of 314 billion dollars, including
respectively 32 and 138 billion dollars for the UK alone) and Japan (5 for a valuation of $6.8
billion dollars) but still far behind the US (405 for a valuation of $1,353 billion dollars). In terms
of scientific effort, the importance of China has been rising for the past 20 years as measured
by the number of top cited articles, which places the country as second scientific powerhouse
behind the US.2

This catch up in terms of scientific publications is even more dramatic when it comes to Artificial
Intelligence research (Baruffaldi et al., 2020). This tends to support the view that China has
built the capacity to innovate in the technology of tomorrow, making its catch up more likely to
be sustainable, and avoid the middle-income trap (Fan, 2014). This is partly thanks to trade and
foreign direct investments (Aghion et al., 2019b; Hu and Jefferson, 2009), but also to subsidies
and reforms of property rights (Dang and Motohashi, 2015).3 However, other strands of the
literature argue that China still suffers from stigmas that penalize its capacity to innovate.

1See CB Insights for a list.
2See the OECD Science, Technology and Industry Scoreboard 2017.
3These state subsidies and incentives to file patent applications have led experts to cast some doubt on the
relevance and quality of the average Chinese patent (see e.g. (He, 2021)). In the empirical analysis, we take
this possibility into account.

https://www.cbinsights.com/research-unicorn-companies
https://www.oecd-ilibrary.org/docserver/9789264268821-en.pdf


Abrami et al. (2014) explain that while China does not lack the number of entrepreneurs,
inventors or scientists, its institutions are not well-suited to encourage the development of
frontier technologies. For example, every company larger than 50 employees is required to have
a Chinese Communist Party (CCP) representative and a party liaison. In 2020, Xi Jinping,
the general secretary of the CCP openly opposed the IPO of Ant Group, a large innovative
financial company. Aghion et al. (2008) and Aghion et al. (2021b) show that academic freedom
and democracy are two critical requirements for the production of original research. Aghion et
al. (2021b) thus question the capacity of China to compensate for their lack of freedom with
mass investment in R&D.4

We contribute to this literature by looking as objectively as possible at the relative importance
of China in the development and diffusion of recent frontier technologies that were chosen and
identified without any preconceptions.

We also speak to a recent literature that exploits the patent corpus to study the diffusion of
frontier technologies. These technologies are typically characterized by their radicalness, novelty,
pervasiveness and their capacity to diffuse quickly and to have large impacts but are also highly
uncertain and risky (Rotolo et al., 2015). Webb et al. (2018) look at the evolution in the number
of patents filed in the US for a number of modern technologies such as Artificial Intelligence,
Machine Learning, Semiconductor, Drones. . . They focus on the 1970-2015 period and find that
most of these technologies have experienced a boom in the number of patents and inventors in
the past decades mostly driven by US and Japanese multinationals. They also report a modest
but growing contribution of Chinese inventors and firms to the rise of high tech patenting in the
US. In a subsequent work, Bloom et al. (2021) also used patent data to study the diffusion of 29
disruptive technologies and their adoption by firms and labor markets in the US. Their findings
suggest that there are long term impacts on the areas that hosted the initial development of
these frontier technologies. These two studies focus on the US and attempt to have an overall
view on the role and impact of high tech patenting. In contrast, Bessen and Hunt (2007) use
patent data to analyse specifically the rise in software patenting in the US and compare the role
of increased R&D spending and changes in IP legislation to explain this phenomenon. Other
studies typically conducted by patent offices apply a combination of different methods to look
at the development of patenting in a specific technology and a specific region.5 For example IP
Australia (2019) has analyzed the significant increase in patenting related to Machine Learning.
We contribute to this literature by considering six technologies that cover various subjects and
consider patents from the four main global technology contributors. This allows us to compare
countries over time since the birth of these technologies.

Finally, we also contribute to a methodological literature which aims at delimiting technologies
using patents. Historically, Trajtenberg (1990b) tackled the classification problem by manually
curating US patents belonging to the Computed Tomography Scanners technology. This method
delivers precise results but is of course too labor-intensive to be extended to a larger corpus

4Song et al. (2011); König et al. (2020) use a structural estimation of a dynamic heterogeneous firm model and
report that R&D investment in China seems to be less productive than in other countries (namely Taiwan).

5For a list of such study, see WIPO (2021).



and multiple technologies. Other studies have used a number of rules combining keywords and
Cooperative Patent Classification (CPC) classes to define a technology and constitute groups.
This is the methodology applied for by Webb et al. (2018)6 and by the patent landscaping
literature. For example, the European Patent Office (EPO) has published a report on patenting
in the field of automated vehicles (EPO, 2018). The rules used in these analysis are typically ad
hoc and require a high level of expertise. Recently, Abood and Feltenberger (2018) introduced a
new methodology that aims at circumventing this difficulty. Their approach, which we present
in more details in Section 3.3.2, allows to emulate human-made technology classification using
only a small number of representative patents as an input. Related approaches have leveraged
Natural Language Processing and clustering algorithms to construct groups of patents (see
Bergeaud et al., 2017 for a review). For example, the Fung Institute proposes an application of
automatic labeling using machine learning to automated vehicles.7 Similarly Giczy et al. (2021)
have applied a slightly modified version of the Abood and Feltenberger (2018)’s algorithm to
identify patents related to AI. These methodological works however do not attempt to measure
and compare the diffusion of technologies across countries and time. We build on their method
and adapt both the selection process of the imputed set of patents and the way the algorithm
expands from this initial seed. Ultimately, our methodology combines a small amount of human
work and automated landscaping to select patents related to a given technology with a high
degree of precision and with no limitation in the geographical coverage.

The remaining of this paper is organized as follows: section 3.2 details our technology definition
and selection procedure; Section 3.3 presents the automated patent landscaping approach and
how we extend it; Section 3.4 carefully evaluates the internal and external validity of the results
generated by our algorithm on each of the six technologies; section 3.5 documents the rise of
China’s technological power; Section 3.6 concludes.

3.2 Technology definition and selection

The interpretation of the results we present in this paper are determined by two fundamental
questions. First, what do we mean by “technology”? Second, how did we select our set of
frontier technologies? We address these two key preliminary questions in this section.

3.2.1 Definition

Technology is a widely used term and can refer to many different concepts. In the economic
and innovation literature, we classified its main usages into three categories which we call
“technique”, “functional application” and “application field”. A technique is a set of processes
sharing a common methodological paradigm. Two distinct techniques can share a common
goal. For example, TALENs, Zinc Fingers and CRISPR are all distinct techniques pursuing the
same goal of editing the genome. A functional application is a high level goal which is directly

6See Section 3.2.2 for more details on the selection process.
7See the webpage of the Fung Institute Capstone Project.

https://funginstitute.berkeley.edu/capstone-project/patent-analysis-using-ml


targeted by one or several techniques in the course of their developments. Examples include
computer vision and genome editing. The range of their market applications can vary and
usually exceed a single market. Eventually, an application field is an existing or newly created
economic sector which can leverage functional application to develop new or improve existing
products. Examples of application fields include smartphones, nuclear power generation, etc..

In this paper, we work at the functional application level. This comes as a natural choice since
we are interested in frontier innovation which has the potential to give advanced economies a
significant growth momentum. Hence, our focus is on technologies which, like General Purpose
Technologies, have the ability to infuse progress in a large range of applications.

3.2.2 Selection

There are two main ways to define a set of technologies of interest: the supervised and unsuper-
vised approaches. The most common approach, the “supervised”, is based on human curation
of technology-related documents. This is typically the approach followed by Webb et al. (2018)
who define a list of technologies in the high-tech segment from prior knowledge. The second and
more recent approach, the “unsupervised”, combines text mining (specifically “topic modelling”
techniques) and technology-related corpuses to identify technologies (e.g. topics) without any
use of prior knowledge. Such a method is implemented by Bloom et al. (2021) who use earnings
conference call transcripts to uncover technologies which are the most frequently cited for their
contribution to companies’ momentum.

Although extremely appealing, the unsupervised approach presents two limitations in our con-
text. First, and most importantly, relying on past financial and corporate documents will
invariably miss frontier technologies with still nascent market applications. Second, existing
topic modeling techniques cannot guarantee that the identified “topics” (here technologies) are
conceptually homogeneous. Without any supervision, selected technologies might (and will)
include techniques, functional applications and application fields indifferently. Note that this
can be partially addressed by adding a manual curation on top of the topic modeling results.
Hence, in our specific setting, this however attractive approach appears to be inappropriate.

Although we opted for the supervised approach, we designed a methodology to minimize our
own biases and discipline the selection process. In particular, we took great care not to focus
on technologies with large media coverage in Western countries which could affect our overall
picture. First, we curated a large number of reports and articles published at different time
and dedicated to breakthrough technologies. These articles have various sources: international
institutions (OECD, 1998, 2016, EPO, 2020) national agencies (Tarasova and Shparova, 2021,
Kennedy, 2015), industry associations (BDI, 2011), experts (Review, 2021) and consulting com-
panies (McKinsey, 2021; Deloitte, 2021). We took care to include sources from both developed
and developing countries. From those documents, we listed without any a priori more than
30 technologies in a broad sense. Then we classified these items into the three aforementioned
categories (technique, functional application and application field) and kept only those entering
the “functional application” category. Eventually, we reviewed the remaining candidates (goals,
recent breakthroughs, expected economic impact, and development stage) with two main ob-



jectives in mind: 1) keep only technologies which have already started to have some market
applications or are expected to have some in the near future and 2) cover a large number of
distinct application fields. From our initial list of technologies, we ended up with six frontier
technologies: additive manufacturing, blockchain, computer vision, genome editing, hydrogen
storage and self-driving vehicles.

3.3 Automated patent landscaping with humans in the loop

In this section, we introduce the automated patent landscaping approach, how it relates with
existing approaches in economics, and what its limitations are. Then, we show how we overcome
these limitations.

3.3.1 The traditional approach

Delineating a technology in the corpus of patents is a long-standing issue. Various approaches
have been experimented. The three main instruments that have been leveraged are technological
classes, citations and keywords. Although all of these instruments carry some valuable informa-
tion, they are also affected by a significant degree of noise. In this section, we provide qualitative
intuitions on these limitations. Section 3.4 will further quantify them. Technological classes
are based on technical principles which are only partially related to the concept of technology
we are looking for (functional application). Citations between patents have clear limitations in
this case as well. Patent-to-patent citations are generated in order to define the limits of the
technological monopoly granted to the patentees. Proximity in the sense of functional appli-
cation is then just one of the many reasons to generate a citation. Eventually, keywords can
help identify patents dealing with a technology. However, language is highly variational. There
are many ways to say one thing and a given word can mean many different things. Hence,
one can expect neither comprehensiveness nor accuracy from keywords alone. In this context,
following Trajtenberg (1990b), manual curation of patents might appear as the only accurate
way to delineate a technology from the corpus of patents.8

3.3.2 Automated patent landscaping

That is where the automated patent landscaping introduced by Abood and Feltenberger (2018)
makes an important breakthrough. The authors develop a semi-supervised machine learning
framework to emulate human-made technology classification. The algorithm only requires a
small set of patents as input – the seed – which must be representative of the technology of
interest. The algorithm then expands to “probably related” patents using both technological
classes and citations (forward and backward). Specifically, it first expands to technological

8Trajtenberg (1990b) manually curated “computed tomography scanners” patents granted in the US to measure
the value of citations.



Figure 3.1: Automated patent landscaping: expansion

Notes: From Abood and Feltenberger (2018). Starting from a Seed, we first expand to patents belonging to
“important” CPC sub-classes (Codes) and then proceed to two consecutive levels of citations expansions (Level
1 and Level 2). Citations expansions include both backward and forward patent citations. The Anti-seed is

randomly drawn from the complementary set of the expansion. We eventually train a classifier to distinguish
between the Seed and the Anti-seed and apply it to the expansion set to get rid of “false positives”.

classes which are overrepresented in the seed and then it expands twice on citations. Impor-
tantly, at this stage, we know that the expansion set includes patents unrelated to the target
technology - they are called “false positives”. The false positives are pruned out using a classifi-
cation model using the patent abstract (inter alia) as input9, and applied to the expansion set.
Specifically, the classification model is trained to distinguish between seed patents and a set of
patents randomly drawn from the complementary set of the expansion (so-called anti-seed) and
therefore “probably unrelated” to the target technology. This approach ultimately returns a
group of patents in the target technology at virtually no cost, except for the curation of the seed
patents. Importantly, no human intervention is needed to elaborate the set of rules determining
whether a patent belongs or not to the target technology. Semantic patterns are learned from
the data.

This approach is already highly promising but still exhibits some key limitations. First, the
pruning model is trained on “polar” cases while it is to be applied to “intermediary” cases.
The seed patents (positive examples) are selected to be at the “core” of the target technology.
On the contrary, anti-seed patents (negative examples) are chosen from the complementary of
the expansion set, hence far away from the target technology. Even if the algorithm performs
well on the validation set10, there is no guarantee that it will perform well when applied to
patents in the expansion set. The expansion set is indeed likely to include a large share of
“intermediary” examples, which are neither at the core of the target technology, nor very far
from it. Training the model using a vast majority of polar examples has a potential for harming
the overall validity of the classification model and algorithm results. Second, the algorithm
does not really account for data variation, that is, the impact of variations in the seed on the
algorithm outcome. Algorithm robustness is, however, a critical point to assess the degree of

9Abood and Feltenberger (2018) use citations and technological classes (CPC) in addition to patent abstracts.
10The validation set is typically a 20-50% random split of the learning set (here, the seed and anti-seed patents)

which is not used for training the model.



confidence we can place in our results and the overall interpretation.

3.3.3 Extension

Our extended approach addresses these two limitations. First, we augment the anti-seed with
“harder” examples. These harder examples naturally arise from the human labelling of the seed
patents that we performed for each technology. We started by inspecting existing attempts to
landscape our technologies of interest using traditional methods. Using this literature and their
reported selection rules (usually based on technological classes and/or keywords) we generated
a set of candidate patents to be included in the seed for each technology. Table 3.6 to 3.11
(in Appendix) details these rules for each technology. Next, we manually and carefully labelled
a random sample of candidates (see annotation guidelines in Appendix, Table 3.12). Impor-
tantly, rejected examples provide “hard examples”. Although they matched one or more rules
used by previous attempts to landscape the technology, human annotators decided to exclude
them based on their abstracts. These are typically the “intermediary” examples we want our
classification model to learn from. We call this set of examples the augmented anti-seed. The
model is ultimately trained using both the anti-seed à la Abood and Feltenberger (2018) and
the augmented anti-seed to constitute the negative examples.

Second, we addressed the data variation question by implementing a series of robustness tests
based on random variations in the seed. Specifically, we investigated how variations in the seed
affect the expansion and the pruning outcomes. To test the expansion robustness, we drew
random subsets from the seed, ran the expansion using each of these subsets and compared the
generated expansion sets. Next, we assessed the pruning robustness by iterating over various
random train-test splits of the annotated data. Various models were trained on varying sets
of training data for each technology. Pruning robustness was ultimately evaluated by looking
at models’ agreement on a sample of out-of-training patents. Detailed results are reported in
Section 3.4.

3.4 Algorithm deployment and validation

In this section we go through the main steps of the actual deployment of the algorithm. Next,
we show that our results, in addition to being accurate and consistent, also exhibit patterns in
line with technology experts’ expectations.

3.4.1 Algorithm deployment

To begin with, it is important to note that contrary to Abood and Feltenberger (2018), we deploy
the algorithm at patent family level rather than at patent publication level. A patent family is
a collection of patent documents that are considered to cover a single invention. Their technical
contents are identical. Hence, considering only one document per family does not imply any



loss of information while significantly reducing the total number of items considered.11 This
seemingly minor twist has two important practical advantages. First, it enables us to consider
all families with at least one publication having a known abstract. That way, we ultimately cover
more than 86% of all publications since 1970, while only 76% of patent publications do have
a non-null abstract in our database. Detailed coverage is reported in Figure 3.8 in Appendix.
Second, it minimizes the amount of texts to be classified at the pruning stage. Each family
is processed only once, even if it includes more than one patent. This improves the overall
computational tractability of the algorithm.

Next, we delve into the algorithm deployment itself. As already discussed in Section 3.2, our
work starts one step before the algorithm described by Abood and Feltenberger (2018). This
first step consists in the definition of rules to identify a set of candidates. These candidates
are picked out of patents which match at least one of the rules that we were able to find
in the specialized literature. These rules include technological classes, keywords and patent
similarity12. A random set of candidates are then labeled by humans based on the abstract and
detailed annotation guidelines (see Table 3.12 in Appendix). Annotation guidelines guarantee
both transparency and reproducibility. In practice, we labeled candidates until we “accepted”
at least 300 candidates constituting the technology seed. Importantly, rule-based candidates
systematically included a large proportion of false positives, which were rejected. This set of
rejects constituted the augmented anti-seed.

Starting from the seed, the following step is the expansion. Regarding this step, we mainly
stick to the Abood and Feltenberger (2018) procedure. We first expand to technological classes
that were over-represented in the seed and then expand twice using citations (backward and
forward). Note however that we had to adapt at the margin to take into account our choice
to work at family level rather than publication level. We had to express citations in terms of
the patent family rather than the usual publication format. For each family, we considered all
citations received (forward) and sent (backward) by any patent in the family.

Eventually, our pruning stage also differs from Abood and Feltenberger (2018) along 3 dimen-
sions. First comes the composition of the training data. As already discussed, we add an
augmented anti-seed to the seed and anti-seed described in their paper. Second, while our
predecessors used not only text but also citations and technological classes as input to the clas-
sification model, we only restricted to text. In our view, both technological classes and citations
imply potential pitfalls at this stage. Using technological classes in both the expansion and the
classification model can generate pathological cases. Assuming that all technological classes
in the seed are found important, then the anti-seed and the seed have no technological class
in common which makes the classification task trivial. Regarding citations, by construction,
patents in the second level of the citation expansion (L2) have no citations in common with
the seed. Hence, considering citations in the classification task implies a systematic and un-

11There are around 120 million patent publications in the CLAIMS dataset versus 70 million patent families.
12The specialized literature sometimes specifically reports key patents for a technology. We used the most similar

patents as defined in the Google Patents database to include the most similar patents to these key patents in
our dataset.



controlled bias against patents in the part of the expansion which we find undesirable. Third
comes the model itself. We implement 3 different neural network architectures popular for text
classification tasks: the multi-layer perceptron (MLP), the convolutional neural network (CNN)
and a transformer, specifically a pre-trained Bert encoder. We provide an overview of these ar-
chitectures in the following sub-section. The actual pruning is performed using the Transformer
model which exhibits both the highest performance and consistency.

3.4.2 Performance and consistency

The most simple architecture we consider is the multi-layer perceptron (MLP). This architecture
can be seen as a stack of logistic regressions and treats tokens or groups of tokens independently.
Although it can be successful at identifying keyphrases, it is unable to handle context and might
eventually be seen as a sophisticated keyphrase matcher. Then, we implemented a Convolutional
Neural Network (CNN) model. This architecture leverages the sequential nature of text through
the use of feature maps (masks). These feature maps are there to detect sequences of tokens
with a common and discriminant “meaning”. CNN performances usually dominate those of
MLP models thanks to this enriched understanding of language. However, they lack “memory”
and cannot handle long context as feature maps typically focus on 3 to 5 token long spans of
text. Eventually, the Transformer architecture which was recently introduced has reached state-
of-the-art results in many natural language processing (NLP) tasks, including text classification.
Transformers rely on a core mechanism called attention which enables them to “understand”
tokens in the context of neighbouring tokens. Transformers are very large models trained at
masked language completion on very large text corpora and eventually fine-tuned on specific
tasks (e.g. text classification). This pre-training allows downstream users to start from a model
already embodying a large “knowledge” of language. A limited number of examples is then
enough to adjust weights and achieve high performances on specific tasks. This is especially
well-suited when annotating examples is costly. The main drawback of using Transformers is
their high computational costs.13

We then train all these models. The task is a standard binary text classification task. Specif-
ically, we train and evaluate each model on ten distinct train-test sets for each technology.
We implement this approach as a cross-validation method to have an estimate of the impact
of random variations of the training set on both the performance of the model and its out of
training sample predictions - later called consistency. We first focus on performance and will
come back to consistency later. We report the median precision, recall and F1-score for each
technology and model architecture in Table 3.1. These metrics were all computed on the test
set, that is, on examples unseen by the model at train-time. The precision is the share of texts
predicted to be in the seed and which are indeed part of it. The recall is the share of actual
seed texts which were indeed predicted to be part of it. The F1-score is the arithmetic mean of
the precision and recall. We observe that MLP and CNN architectures tend to exhibit similar

13Transformers are almost intractable using traditional Central Processing Unit (CPU) and require Graphics
Processing Unit (GPU).



F1-score. However, MLP models have higher precision and lower recall than CNN. This sends
us back to the fundamental nature of MLP. As stated earlier, MLP can be seen as a sophis-
ticated keyphrase matcher which usually has high precision but lower recall. In any case, the
transformer outperforms both of the models and achieves around 90% of median F1-score for
all technologies except for self-driving vehicles (79%).14

Table 3.1: Models performance

MLP CNN TRF

P R F1 P R F1 P R F1

Additive manufacturing 0.89 0.79 0.84 0.79 0.85 0.81 0.86 0.92 0.89
Blockchain 0.90 0.81 0.86 0.83 0.88 0.86 0.97 0.98 0.97
Computer vision 0.89 0.81 0.85 0.86 0.87 0.87 0.87 0.95 0.90
Genome editing 0.89 0.87 0.88 0.87 0.91 0.88 0.86 0.94 0.89
Hydrogen storage 0.86 0.73 0.80 0.76 0.83 0.78 0.92 0.98 0.93
Self-driving vehicle 0.79 0.65 0.71 0.69 0.73 0.71 0.75 0.85 0.79

Notes: Reported performance metrics were computed on the test set - unseen during training. Performance metrics are reported as fol-
lows: P for precision, R for recall and F1 for F1-score.

Interestingly, our candidate annotation exercise gives us the opportunity to compare those re-
sults with the performance that would have been obtained based on the rules used by existing
attempts to landscape our six technologies of interest. Specifically, it enables us to obtain
performance metrics for rule-based approaches using technological class, keywords and patent
similarity. It clearly appears that our approach to delineate technologies from the corpus of
patents not only achieves good performance but also outperforms traditional rule-based meth-
ods. Although our approach does not enable us to compute all the performance metrics re-
ported before, we can compute the precision of rule-based approaches. We find that rule based
candidate selection delivers both low and variable precision performances across technologies.
Specifically, precision from CPC-class rule-based patent selection ranges from 0.01 (blockchain)
to 0.34 (additive manufacturing). Precision from keyword rule-based selection goes from 0.09
(blockchain) to 0.89 (genome editing) for an average of 0.32. Precision from patent similarity
ranges from 0.02 (additive manufacturing) to 0.57 (genome editing).

As already discussed, although performance per se matters, it is also crucial to understand how
variations in the seed data can affect the results of the algorithm. We identify two channels.
First, data variations can affect the expansion. The latter depends on the seed and has a
critical role. It determines the set of documents which will be considered by the pruning model.
Second, data variations can affect the pruning itself. The pruning model depends on the seed,
the anti-seed and the augmented anti-seed and ultimately determines which documents in the
expansion are to enter the technology or not. Robustness to random variations in the data is
then crucial to make sure that algorithm results can be exploited rigorously. To investigate
the consistency of the expansion, we generated random subsets of the seed. Specifically, we
considered 3 different sizes: 90%, 70% and 50% of the initial seed and drew 10 subsets for each

14This technology is actually hard to classify even for humans. The very same technology can be used to automate
driving or to assist human driving. In the former case, we would accept a patent while in the latter it would
be rejected.



size. We then proceeded to the full expansion starting from these distinct seeds and computed
the pairwise family overlap of the generated expansion sets for each technology and seed size.
Detailed results are reported in Table 3.2. We find that the average pairwise family overlap
exceeds 89% in all cases. This remarkably high figure indicates a high level of consistency for
the expansion step.

Table 3.2: Median pairwise expansions overlap

90% 70% 50%

Additive manufacturing 0.99 0.93 0.89
Blockchain 0.99 0.98 0.96
Computer vision 0.99 0.96 0.92
Genome editing 0.99 0.99 0.98
Hydrogen storage 0.99 0.97 0.95
Self-driving vehicle 0.99 0.97 0.95

Notes: For each size (90%, 70% and 50%), we drew 10 random sub-
sets of the seed and proceeded to an expansion. For each pair, we
computed the share of families in the two expansions. We report the
median share of overlapping families across all expansion pairs.

Next, we looked at how the pruning stage is affected by variations in the training data. As
discussed above, we trained the same architectures on 10 different train-test splits (of respective
size 80%-20%) for each technology as a way to emulate natural variations in the data. We then
apply these models to a set of 10,000 out-of-training-sample documents randomly drawn from
the expansion. For each technology, we then look at the standard deviation of the ten scores
(each score ranging between 0 and 1) for each document and report its median in Table 3.3. We
find that the standard deviation of the predicted scores is usually very low, most of the time
below 0.05. This result supports the consistency of the pruning step.

Table 3.3: Models robustness (Median dispersion in predicted scores)

MLP CNN TRF

Additive manufacturing 0.029 0.082 0.017
Blockchain 0.008 0.047 0.003
Computer vision 0.015 0.029 0.01
Genome editing 0.003 0.001 0.004
Hydrogen storage 0.015 0.037 0.005
Self-driving vehicle 0.039 0.091 0.011

Notes: For each model architecture, we trained 10 models using dis-
tinct random subsets (80%) of the training set. Each model was then
applied to a set of 10,000 texts (out of training set). We report the
median standard deviation (at the sample level) of the predicted scores
across models.

In a nutshell, we find that our approach provides both accurate and consistent results. Next,
we show that these results also achieve external validity.



3.4.3 External validation

Going further, we use the output of the algorithm to investigate whether our results make sense.
To do so, we compute the top assignees and top inventors as reflected by the total number of
patents they hold.15 We do it for each sudied technology. We then confront these results with
prior insights from technology-specialised literature as well as background checks.16 These lists
of top assignees and inventors not only reassure us about the validity of our approach, but also
provide insights about the main actors of the different technologies considered.

Top 10 assignees by technology

Table 3.4 reports the top 10 assignees for each technology by the number of patents they were
granted worldwide.

Our first observation is that the most famous players in each technology are present. For the sake
of brevity, we focus on some remarkable high-ranked agents for each technology and explain why
they were indeed expected. Starting with additive manufacturing, Xerox and Hewlett-Packard
are two large companies that traditionally developed printers and which naturally developed 3D
printing technologies. In the field of blockchain, Alibaba, Intel, nChain and IBM are also in the
top list of assignees in the expert-based landscaping of blockchain innovation proposed by Clarke
et al. (2020). The most prolific assignees in the field of Computer vision include firms that build
and sell electronic devices, including cameras. Genome editing is well known to be pioneered
by top Universities like University of California Berkeley, Harvard University and University of
Pennsylvania as well as large companies that develop chemistry and pharmaceutical products
like Regeneron and Dupont. These findings are consistent with results from an overview of
patenting in the genome editing technology field proposed by Benahmed-Miniuk et al. (2017).
The field of hydrogen storage technologies is mostly dominated by car manufacturers. This
naturally comes from the fact that the main usage of this technology is to propel vehicles using
hydrogen. Finally, the field of self-driving cars also includes many traditional car manufacturers,
including Toyota and Ford that communicate intensively on their progress in the development
of autonomous vehicles. The list of top assignees also includes automotive equipment suppliers
such as Bosch and Denso Corp.17

On top of very large firms that spread over a large number of different technologies such as IBM
and Samsung, we also note the presence of a number of firms that are much more specialized in a
specific field. This is notably the case of Air Liquide for hydrogen storage, nChain for blockchain,
ASML for additive manufacturing, Regeneron pharma for genome editing and Denso Corp for
self-driving cars.

15We used the harmonized name of assignees and inventors from the CLAIMS dataset. This harmonization does
not always guarantee that two different names of the same entities are actually merged in the same entity (e.g.
Toyota Motor Co Ltd and Toyota Motor Corps).

16Note that, while the landscaping is done at the family level, analytical results are at the patent publication
level.

17Toyota, Ford and Bosch are mentioned as the top assignees in the field by WIPO (2019, Chapter 3).



Table 3.4: Top 10 assignees

Additive
manufac-
turing

Blockchain Computer
vision

Genome
editing

Hydrogen
storage

Self driv-
ing vehi-
cle

1 Samsung
Electronics
Co Ltd

Alibaba
Group Hold-
ing Ltd

Canon KK Univ Califor-
nia

Toyota Motor
Co Ltd

Toyota Motor
Co Ltd

2 Hewlett
Packard
Development
Co

IBM Sony Corp Pioneer Hi
Bred Int

Honda Motor
Co Ltd

Bosch Gmbh
Robert

3 Xerox Corp Qualcomm
Inc

Samsung
Electronics
Co Ltd

Du Pont Nissan Motor Honda Motor
Co Ltd

4 Asml Nether-
lands BV

Samsung
Electronics
Co Ltd

Koninkl
Philips Elec-
tronics NV

Regeneron
Pharma

Toyota Motor
Corp

Nissan Motor

5 Gen Electric LG Electron-
ics Inc

Matsushita
Electric Ind
Co Ltd

Genentech Inc Matsushita
Electric Ind
Co Ltd

Ford Global
Tech LLC

6 Eastman Ko-
dak Co

Sony Corp Sharp KK Monsanto
Technology
LLC

Sanyo Elec-
tric Co

Denso Corp

7 Canon KK NChain Hold-
ings Ltd

Seiko Epson
Corp

Harvard Col-
lege

Hyundai Mo-
tor Co Ltd

Toyota Motor
Corp

8 Fujifilm Corp Huawei Tech
Co Ltd

Lg Electronics
Inc

Hoffmann La
Roche

Air Liquide Hyundai Mo-
tor Co Ltd

9 Siemens AG Intel Corp Qualcomm
Inc

Univ Pennsyl-
vania

Panasonic
Corp

Mitsubishi
Electric Corp

10 IBM Ericsson Tele-
fon Ab L M

IBM Centre Nat
Rech Scient

GM Global
Tech Opera-
tions Inc

Bayerische
Motoren
Werke AG

Notes: Assignees are ranked based on the total number of patents for each technology over the whole corpus of patents.
The harmonization of assignees’ names is taken from the CLAIMS dataset.

Top 10 inventors

Table 3.5 reports the top 10 inventors for each technology by the number of patents they were
granted worldwide.

Regarding the top inventors, background checks helped us validate the consistency of our re-
sults. As previously, for the sake of brevity we focus on the most emblematic and high-ranked
inventors. We note the presence of M. Karczewicz in Blockchain and Computer Vision. She
is a prolific inventor working at Qualcomm Technologies, Inc.. Marta. Karczewicz is famous
for having developed many technologies related to data compression which facilitates the trans-
fer of important mass of information. The methods she developed are very central for many
computer-related technologies such as computer vision and blockchain. As a recognition for her
contributions, the EPO named her one of the three finalists for the award of European inventor



Table 3.5: Top 10 inventors

Additive
manufac-
turing

Blockchain Computer
vision

Genome
editing

Hydrogen
storage

Self driv-
ing vehi-
cle

1 Silverbrook
Kia

Karczewicz
Marta

Karczewicz
Marta

Murphy An-
drew J.

Ovshinsky
Stanford R.

Tabata At-
sushi

2 Lapstun Paul Zhang Li Zhang Li Macdonald
Lynn

Ukai Kuni-
hiro

Shimizu
Yasuo

3 Ng Hou T. Zhang Kai Nishi
Takahiro

Mcswiggen
James

Edlund David
J.

Nordbruch
Stefan

4 Vermeersch
Joan

Wright Craig
Steven

Kondo Tetsu-
jiro

Zhang Feng Fetcenko
Michael A.

Hayakawa Ya-
suhisa

5 Van Damme
Marc

Qiu Honglin Wang Ye-kui Rosen Craig
A.

Taguchi
Kiyoshi

Lynam Niall
R.

6 Lewis
Thomas
E.

Yang Xinying Chen Ying Stevens Sean Wakita Hide-
nobu

Watanabe
Kazuya

7 Zhao Lihua Wang Yue Chen Jianle Ruben Steven
M

Maenishi
Akira

Yasui
Yoshiyuki

8 Patibandla
Nag B.

Liu Hongbin Yamazaki
Shunpei

Wilson James
M.

Young Kwo Liu Jun

9 Ganapathiappan
Sivapackia

Wang
Zongyou

Kadono
Shinya

Ni Jian Nishio Koji Breed David
S.

10 Ye Jun Fukushima
Shigeru

Sugio
Toshiyasu

Gurer Cagan Reichman
Benjamin

Matsuno Koji

Notes: Inventors are ranked based on the total number of patents for each technology over the whole corpus of patents.
The harmonization of inventors’ names is taken from the CLAIMS dataset.

of the year 2019.18 Considering additive manufacturing, the most prolific inventor in the field is
Kia Silverbrook. He is also a famous inventor who holds more than 9,000 patents worldwide.19

K. Silverbrook founded Silverbrook Research, a company that developed digital printing and 3D
printing technologies, among other inventions. In the field of genome editing, our top inventor
is Andrew Murphy. He is the vice president in charge of research of Regeneron, a biotechnology
company that develops different drugs and recently made important progress in new therapies
using CRISPR (Gillmore et al., 2021). We also note the presence of Feng Zhang, a Professor
at MIT and researcher at the Broad Institute. He is well known for his role in the development
of optogenetics and CRISPR. He is also famous for his ongoing patent dispute with Chemistry
Nobel Prize recipients J. Doudna and E. Charpentier over CRISPR-cas9 human application
priority. Next, regarding hydrogen storage, Stanford R. Ovshinsky was a prolific inventor and
engineer who contributed enormously to various fields, including energy science. In particular,
he developed solid hydrogen storage technologies and founded the company Ovshinsky Innova-

18See EPO (2019).
19See Wikipedia (2021).



tion LLC at the end of his life to continue to explore alternative sources of power. Finally, in
self-driving vehicle technology, Atsushi Tabata is an engineer at Toyota who published several
articles related to the automation of driving controls.

3.5 The rise of China

In this section we look at the contribution of the Triad and China to frontier technologies.
Specifically, their respective contributions are measured by the count of utility patent first
publications (see Table 3.14 in Appendix) at the US (US), European (EP), Japanese (JP) and
Chinese (CN) patent offices20 which belong to one of the frontier technologies we defined earlier.
Note that, for each technology , we report only years where the number of published patents
exceeded 500. We are fully aware of the limitations of such a direct approach. The two main
limitations are i) that all patents are not created equal, meaning that patent count comparisons
should be qualified by the quality of patents, and ii) that the patenting office is an imperfect
proxy for the actual location of the technology contributors. We address both of these concerns
as follows. We will look at the quantity and the quality of patents granted by the four offices
and proxy the origin of the invention using the office of earliest filing of the patent family.21

3.5.1 The bi-polarization of frontier innovation by the US and China

We start by delving into the share of the four patent offices in the patent publication count
for each technology. Our results are reported in Figure 3.2. The main trends are surprisingly
consistent across technologies.

The most striking fact is the pervasive growth of the share of the Chinese office across all frontier
technologies since the 2000s. While it used to be almost insignificant in the early 2000s, at the
end of the 2010s, the Chinese office represented around 40% of patent publications for all the
frontier technologies we are looking at. This share even exceeded 60% in the case of blockchain.

It should also be noted that this relative growth of China’s technological power takes place in a
setting characterized by a marked heterogeneity of trajectories within the Triad. Although the
share of the US remains steady at around 40% since the 1990s, the share of Japan experiences a
sustained decline over that period while the European patent office’s share remained stable (or
slightly decreasing) at around 10%. Japan’s decline went from 40% or more of any technology
patenting activity in the early 1990s to around 10% at the end of the 2010s.

Overall, the frontier technology landscape which used to be dominated by the Triad is now
largely bi-polarized between the US and China. At the end of the 2010s, the US and Chinese
patent offices represented together 60% or more of all patents published in any of our frontier
technology.

20Note that this analysis focuses on the four most important technological contributors but our data enables us
to include any country (with a patent office) in our analysis.

21The lack of data on the origin of patentees (inventors and assignees) in general and specifically for patents
granted at the Chinese office prevent us from a more direct approach.



Figure 3.2: Relative contribution to frontier technologies

(a) Additive manufacturing (b) Blockchain (c) Computer vision

(d) Genome editing (e) Hydrogen storage (f) Self-driving vehicle

US CN EP JP
Notes: Publication year is reported in x-axis.

3.5.2 The Chinese catch up in quality

Next, we examine the quality of patents published at the four aforementioned patent offices. As
discussed earlier, measuring frontier innovation contributions using only the count of patents
published in frontier technologies could be misleading. Patents are not all created equal. In
particular, there are good reasons to believe that patent counts, especially in the case of China,
might be a noisy signal of technological development undermined by poor patent quality. As
discussed by He (2021), patent applications in China reflect diverse incentives which have some-
times little to do with invention. These incentives include government subsidy or job promotion,
reputation building for individuals or universities and institutions, or acquiring certification as
national high-tech enterprises. In this context, Hudson (2021) inter alia, stressed that patent
counts is an unreliable methodology to determine 5G leadership. This naturally raises serious
questions on China’s actual contribution to frontier innovation and the meaning of our first
result.

We investigate this by looking at a common measure of patent quality, the number of citations
received by patents.22 We chose to focus on the upper tail of the distribution since the most
cited patents are also those which are expected to have the largest impact. Specifically, we look
at the ratio between the number of citations received by the 5% most cited patents published
at a given office and the number of citations received by the 5% most cited patents published
at the US Patent Office (USPTO). Importantly, in order to avoid mixing citations generated
by different offices with distinct citation rules, we restrict to citations from USPTO patents.
Note that, due to home-bias, the number of citations received by USPTO patents can only be
used to compare patents published at other offices between themselves and should not be used

22Note however that the very notion of patent quality is multi-faceted. The various measures used to apprehend
patent quality are generally inconsistent as evidenced by Higham et al. (2021).



to compare USPTO patents with patents published at other offices. Results are reported by
Figure 3.4.

Figure 3.4: Citations received by the 5% most cited patents relative to the 5% most cited US
patents

(a) Additive manufacturing (b) Blockchain (c) Computer vision

(d) Genome editing (e) Hydrogen storage (f) Self-driving vehicle

CN EP JP
Notes: We consider only citations from USPTO patents to avoid mixing citations generated by different offices with

distinct citation rules. Due to home-bias, the number of citations received by USPTO patents can only be used to compare
patents published at other offices between themselves and should not be used to compare USPTO patents with patents
published at other offices. Publication year is reported in x-axis.

We find that the 5% most cited patents published at the Chinese patent office during the
early 2000s used to be less cited than their EP and JP counterparts (except for blockchain).
However, the gap has consistently declined since that period. At the end of the period, the 5%
top cited patents published at the Chinese patent office are equally cited by US patents as their
European and Japanese counterparts. The 5% most cited Chinese patents in the Blockchain
and Genome Editing technologies even overtook their European and Japanese counterparts by
the number of citations received from patents published at the US Patent Office. Importantly,
these results are robust to considering the top 10% of patents published at each patent office.
Overall, we find that, although the stock of frontier technology patents published at the
Chinese office exhibit a lower quality than their European and Japanese counterparts, this gap
has been reducing since the 2000s and is even closing in some technologies (Blockchain and
Genome editing).

3.5.3 China’s frontier innovation domestic capacities build up

Third, we investigate whether the rise in frontier technology patenting at the Chinese patent
office reflects the actual development of domestic innovation capacities. This is a key question
for the interpretation of the previous findings. If most of the frontier technology patenting
activity at the Chinese patent office comes from foreign patentees (inventors and assignees),
then it might simply reflect the attractiveness of the Chinese market for these foreign technology



holders. On the contrary, if it is generated by domestic patentees, then it echoes the build up
of local frontier innovation capacities which are key to escape the middle-income trap.

Unfortunately, the location of patentees remains largely incomplete in standard datasets, espe-
cially for Chinese patents. Hence, we were forced to proxy this data using the office of priority
filing, that is the office where the first patent of a family was filed. The underlying rationale is
that patentees tend to first file an invention at the patent office of their home country and then
file abroad. Using this proxy, we look at the priority filing composition of frontier technology
patents published at the US and Chinese patent offices. Results are reported in Figure 3.6.

Figure 3.6: Office of priority filing of patents published at the US and Chinese patent offices

(a) US - Additive manufactur-
ing (b) US - Blockchain (c) US - Computer vision

(d) CN - Additive manufactur-
ing (e) CN - Blockchain (f) CN - Computer vision

(g) US - Genome editing (h) US - Hydrogen storage (i) US - Self-driving vehicle

(j) CN - Genome editing (k) CN - Hydrogen storage (l) CN - Self-driving vehicle

US CN EP JP

We find that the US Patent Office tends to exhibit a consistently high share of US priority filing,
usually close to 80%. The mirroring figure was much lower in the early 2000s at the Chinese
patent office. Priority filings were mainly coming from the US and Japan by the time. Things



started to change in the late 2000s. From this moment on, the share of Chinese priority filings
in frontier technology patenting at the Chinese patent office kept rising up to 80% in the late
2010s. This consistent movement seems to reflect the build up of Chinese domestic capacities
to generate frontier innovation.

3.6 Conclusion

In this paper, we have extended the automated patent landscaping approach from Abood and
Feltenberger (2018) to accurately and consistently delineate a group of frontier technologies
from the worldwide corpus of patents. Next, we have leveraged these results to investigate
the contribution of the US, Europe, Japan and China to the production of frontier innovation.
We find that China’s technological power is on the rise, representing around 30% of frontier
technology patenting activities at the dawn of 2020. The contribution to frontier technologies
patenting which used to be dominated by the US, European and Japanese patent offices in the
early 2000s is now bi-polarized by the US and Chinese offices. Digging further, we observed
that patents published at the Chinese office have long exhibited the stigmas of a catching up
economy compared to the most advanced economies. However, the gap seems to be closing and
China’s domestic capabilities to be building.

So, can China innovate? It seems that the answer is yes and that China is already innovating
at the frontier. Yet, two important points should be stressed. First, the Japanese example
shows that the innovation capacities of a country can never be taken for granted. What will
happen to China’s innovative power in the next decades is out of the scope of this paper but
China’s spectacular take-off since the 2000s does not necessarily foreshadow the next decades.
Second, we have shown that China is increasingly contributing to frontier technologies which
were pioneered before China’s technological take-off. This leaves the question of China’s ability
to pioneer a new frontier technology untouched.

Despite these obvious limitations we believe that our approach already delivers critical insights
to study innovation through the lens of patents. Most importantly, we believe that opens at least
two important avenues for research. First, delving into the characteristics (assignees, inventors,
patentees locations, etc) of frontier technology patents filed in China and other developing
countries appears to be a promising way to better assess the role of the various technology
diffusion channels. Second, another promising avenue would be to delve into business dynamics
(entry and exit) which take place within technologies themselves and might well have sound
implications for the rest of the economy, including the fall of the labor share in the US and
the rise of superstar giant innovators, as discussed by Autor et al. (2020) and Aghion et al.
(2019a).



3.7 Appendix

Figure 3.8: Patent coverage

Notes: This figure reports the share of patents published in each patent office for which we have an English
abstract available, either directly of through patent family expansion.



Table 3.6: Rule based candidates definition - Additive manufacturing

Technological
classes (CPC )

Keywords Patents

B81C2201/0184,
G05B2219/49002,
G05B2219/49003,
G05B2219/49004,
G05B2219/49005,
G05B2219/49006,
G05B2219/49007,
G05B2219/49008,
G05B2219/49009,
G05B2219/49011,
G05B2219/49013,
G05B2219/49014,
G05B2219/49015,
G05B2219/49016,
G05B2219/49017,
G05B2219/49018,
G05B2219/49019,
G05B2219/49021,
G05B2219/49022,
G05B2219/49023,
G05B2219/49024,
G05B2219/49025,
G05B2219/49026,
G05B2219/49027,
G05B2219/49028,
G05B2219/49029,
G05B2219/49031,
G05B2219/49032,
G05B2219/49033,
G05B2219/49034,
G05B2219/49035,
G05B2219/49036,
G05B2219/49037,
G05B2219/49038,
G05B2219/49039,
A43D2200/60,
A23P2020/253,
B29C64/10,
C08L101/00,
B29C67/00,
B22F3/00,
G05B2219/49013,
G03F7/70416,
B28B1/001,
B33Y10/00,
B23K9/04,
B23K10/027,
B23K15/0086,
B23K11/0013

3d-printing, stereolithography, addi-
tive manufacturing, three-dimensional
objects, rapid prototyping, additive
material manufacturing three dimen-
sional printing material, 3d-printing
materials photolithography, fuse depo-
sition mode

US-4575330-A,
US-5534104-A,
US-6259962-A,
US-5204055-A,
US-5182056-A,
DE-102013205724-A1,
FR-3070302-B1,
US-10076875-B2,
US-8349239-B2,
CN-108868141-A,
CN-105569344-A,
CN-105604327-A,
WO-2018229418-A1,
KR-101706473-B1,
WO-2016111879-A1,
US-20180141274-A1,
WO-2008061909-A2,
US-20170251713-A1,
EP-1352619-B1,
EP-3319545-B1,
EP-3151782-B1,
US-10441426-B2,
US-9056017-B2

Notes: Candidates include patents matching at least one of the following criteria: 1) the patent’s CPC codes include at least
one code listed in the “technological classes”, 2) the patent’s abstract contains at least one of the keywords (or keyphrases)
listed in the columns keywords or 3) the patent is highly similar to a patent listed in the columns patents. The latter
patents are patents known to be at the core of the technology and the similarity is based on Google Patents embedding.



Table 3.7: Rule based candidates definition - Blockchain

Technological
classes (CPC )

Keywords Patents

H04L009/08,
H04L67/00,
H04L009/10,
H04L009/12,
H04L009/14,
H04L009/28,
H04L29/06,
G06Q20/00,
G06F21/00,
G06F12/14,
G06Q20/06,
G06Q20/10,
G06Q20/20,
G06Q20/32,
G06Q20/36,
H04L2209/00,
G09C001/00,
G09C001/02,
G09C001/04,
G09C001/06,
H04L63/00,
G06Q30/0619,
G06F21/00,
G06F021/24,
G06F021/00,
G06F021/02,
G06F012/28,
G06F012/14,
G06F17/00

blockchain, digital mining, bitcoin,
cryptocoin, cryptocurrency, digital
wallet, ethereum, smart contracts,
record keeping, distributed ledger, dis-
tributed node, private ledger, public
ledger, intelligent node, full node, dig-
ital signatures, public key, user iden-
tity, hashing, consensus methodologies,
proof of work, proof of stake, deposi-
tion based, ripple

EP-3125489-B1,
US-9785369-B1,
DE-102016104478-A1,
US-9853819-B2,
US-9842216-B2,
US-9855785-B1,
US-20180137465-A1,
US-9635000-B1,
EP-329562-A1,
EP-3295350-B1,
CN-105719172-A,
CN-105701372-B,
US-9836908-B2,
US-9818092-B2,
US-9824031-B1,
US-10643202-B2,
CN-105844505-A,
US-9298806-B1,
CN-105790954-B,
US-9858781-B1,
US-9853977-B1,
US-9641338-B2,
US-9641342-B2,
EP-325719-B1

Notes: See Table 3.6



Table 3.8: Rule based candidates definition - Computer Vision

Technological
classes (CPC )

Keywords Patents

B25J9/161,
G06F17/16,
G06N5/003,
G06N7/005,
G06N7/046,
B29C66/965,
G08B29/186,
F02D41/1405,
G01N29/4481,
G06F11/1476,
G06F17/2282,
H02P21/0014,
H02P23/0018,
H03H2222/04,
Y10S128/924,
Y10S128/925,
B64G2001/247,
F05B2270/707,
F05B2270/709,
F05D2270/709,
G10H2250/151,
H04L25/03165,
H04Q2213/054,
H04Q2213/343,
B60G2600/1876,
B60G2600/1878,
B60G2600/1879,
E21B2041/0028,
F16H2061/0081,
F16H2061/0084,
G06F2207/4824,
G10K2210/3024,
G10K2210/3038,
H03H2017/0208,
B29C2945/76979,
G05B2219/33002,
G06T2207/20081,
G06T2207/20084,
G06T2207/20084,
H04L2025/03464,
H04L2025/03554,
H04Q2213/13343,
B60W30/06,
B60W30/10,
B60W30/12,
B60W30/14,
B60W30/17,
G06T9/002,
G10L25/30,
G06K7/1482,
G06T3/4046,
B62D15/0285

adaboost, xgboost, bayesian network,
decision tree, genetic algorithm, gra-
dient tree boosting, logistic regres-
sion, random forest, rankboost, sup-
port vector machine, multilayer per-
ceptron, hidden markov model, gener-
alized adversarial network, backpropa-
gation, stochastic gradient descent, su-
pervised training, reinforcement learn-
ing, neural network, self learning,
semi supervised learning, unsupervised
training, transfer learning, overfitting,
active learning, clustering, data min-
ing, deep learning, expert system, em-
bedding, machine learning, fuzzy logic,
feature selection, objective function,
target function, regression model, sig-
nal processing, computer vision, ma-
chine vision, lidar, character recog-
nition, optical character recognition,
handwritten character recognition, im-
age to text, text recognition, face
recognition, facial recognition, biomet-
ric data, biometrics, mass surveillance,
face unlock, traffic cameras, object de-
tection, edge detection, obstacle avoid-
ance, motion tracking

US-8953886-B2,
WO-2003023696-A1,
US-5881172-A,
US-20170024607-A1,
US-20170169205-A1,
US-20170169303-A1,
US-20170235931-A1,
US-20200175326-A1,
US-10872228-B1

Notes: See Table 3.6



Table 3.9: Rule based candidates definition - Genome Editing

Technological
classes (CPC )

Keywords Patents

A01H4/00,
A01K67/00,
C12N/1500,
C12N1/00,
C12N5/00,
C12N7/00C12Y,
C12N5/10,
C12Q1/68,
C12Q1/70,
G01N33/00,
A61K48/00,
A61K31/7088,
C07K14/00

dna editing, gene editing, genome engi-
neering, recombinant targeting vectors,
homologous recombination, double-
strand dna break, homology-directed
repair, targeted dna sequence, dna
cleavage, fok1, sequence-specific nucle-
ase system, zinc finger nuclease, cys2-
his2, transcriptional activator-like ef-
fector nuclease, talens, clustered reg-
ularly interspaced short palindromic
repeat, crispr/cas, cas9, pre-crrna,
tracrrna, enzyme rnase, single guide
rna, crispr-cpf1, ngago, single-stranded
dna-guided argonaute endonuclease,
natronobacterium gregoryi argonaute

WO-2000041566-A9,
WO-2003087341-A3,
WO-2010079430-A1,
WO-2011072246-A2,
US-8440431-B2,
US-8440432-B2,
US-8450471-B2,
US-8566363-B2,
WO-2014093661-A2,
WO-2013176772-A1,
US-20170367280-A1

Notes: See Table 3.6

Table 3.10: Rule based candidates definition - Hydrogen Storage

Technological
classes (CPC )

Keywords Patents

Y02E60/30,
Y02E60/32,
Y02E60/321,
Y02E60/322,
Y02E60/324,
Y02E60/325,
Y02E60/327,
Y02E60/328,
Y02E60/34,
Y02E60/36,
Y02E60/362,
Y02E60/364,
Y02E60/366,
Y02E60/368,
B01D53/02,
C01B3/00-58,
F17C2221/012,
C22C19/03,
C22C22/00,
C22C33/00,
F25B17/12,
H01M4/38,
H01M8/06,
F17C2221/012,
F17C6/00,
F17C5/02

hydrogen fuel cells, hydrogen stor-
age, liquid hydrogen, solid-state hydro-
gen storage, compressed hydrogen stor-
age, dehydrogenation reaction, hydro-
gen gas, hydrogen fuel, hydrogen stor-
age materials, hydrogen-powered de-
vice

US-20080248355-A1,
CN-1322266-C,
US-7678362-B2,
US-7118611-B2,
CN-203500844-U,
US-7094493-B2,
US-10622655-B2,
WO-2019239141-A1,
US-8871671-B2,
JP-6061354-B2,
EP-2554694-B1,
FR-2939784-A1,
CA-2980664-C,
CN-103797142-A,
US-7678479-B2,
JP-6418680-B2,
DE-102009016475-B4,
US-7093626-B2,
DE-102013203892-A,
KR-101107633-B1,
JP-4849775-B2,
JP-3706611-B2,
US-6875536-B2,
JP-5338903-B2

Notes: See Table 3.6





Table 3.11: Rule based candidates definition - Self driving vehicle

Technological classes (CPC) Keywords Patents
G08G1/02, G08G1/0967, G08G1/0968,
G01S7/003, G07B15/063, G07C5/00,
G07C5/12, E01F, E01F9/00,
E01F9/40, H04W36/00, H04W76/50,
B61L3/00, G05D1/0011, G05D1/0027,
G05D1/0287, G05D1/0297, G08G1/00,
G08G1/01, G08G1/09, G08G1/0968,
G08G1/127, G08G1/16, G08G1/164,
G08G1/20, G01S13/93, G10S13/931,
G01S15/88, G01S15/93, G01S17/88,
G01S17/93, G07C5/00, G07C5/01,
G07C5/02, G07C5/03, G07C5/04,
G07C5/05, G07C5/06, G07C5/07,
G07C5/08, E01F9/00, B60L2240/70,
B61L25/00, G01S7/00, G01S13/00,
G01S15/00, G01S17/00, G01S7/00,
G01S7/02, G01S7/52, G01S13/00,
G01S13/86, G01S13/87, G01S13/93,
G01S15/00, G01S15/025, G01S15/87,
G01S15/931, G01S17/00, G06K9/00,
G05D1/00, G05D1/0257, B60W2420/52,
B60Y2400/3017, B60R19/00,
G01S17/023, G01S17/06, G01S17/87,
G01S17/88, G01S17/936, G01S7/48,
G01S2013/9332, B60W2420/52,
G06T1/0007, G06T1/0014, G06T1/20,
G06K9/00362, G06K9/00785,
G06K9/00791, H04N5/335,
B60Y2400/3015, B60W2420/42,
B60S1/56, G01C21/00, G01C21/26,
G01C21/34, G01S7/52, G01S15/00,
G05D1/00, G05D1/0027, G05D1/0088,
G05D1/021, G05D1/0212, G05D1/0276,
G05D1/0287, G05D1/02, G06T1/0007,
G06T1/0014, G06T1/20, G08G1/16,
G08G1/161, G08G1/22, H04W4/44,
H04W4/46, F16D2500/31, B60L2240/60,
B60L2240/62, B60W30/16,
B60W2050/008, B60W2550/402,
B60W2550/408, B60G17/015,
B60G17/016, B60G17/0195,
B60G2800/00, B60K28/04, B60W30/00,
B60W40/00, F16D2500/508,
G05D1/0088, G05D2201/0212,
B60W30/095, B60W50/0097,
G05D1/0212

self-driving vehicle, autopilot, driver-
less vehicle, autonomous vehicle, au-
tomated vehicles, vehicle connectiv-
ity, vehicle-to-vehicle communication,
fleet management, vehicle lidar, vehi-
cle sonar, vehicle radar, vehicle cam-
era, object detection, obstacle detec-
tion, object classification, cruise con-
trol, pedestrian detection, environment
mapping, surround view, blind spot de-
tection, park assistance, lane depar-
ture, traffic sign recognition, drive as-
sist system, trajectory generation, re-
active control, path trajectory plan-
ning, manoeuvers planning

US-20050088318-A1,
US-9293045-B2,
US-9723457-B2,
US-10405215-B2,
WO-2019052353-A1,
US-10089537-B2,
US-10564639-B1,
DE-112019000049-T5,
US-20190384304-A1,
DE-112019000122-T5,
US-20170030728-A1,
US-20190265703-A1,
WO-2019094843-A1

Notes: See Table 3.6. The list of technological classes have been splitted into two columns to save space.



Table 3.12: Annotation guidelines

Technology Options

Additive manu-
facturing

- Create 3D printable model with computer aided design
- Examine stereolithography file for errors and inconsistency
- Convert model into a series of thin layers
- Manufacture materials for 3D printings
- Print 3D model

Blockchain

- Record transactions between two parties
- Serve as public transaction ledger of cryptocurrency
- Execute or enforce smart contract
- Hash tree verification / Verify the authenticity of documents /
Proof of work
- Analyse transactions in a distributed ledger
- Manage Identity System based on the concept of peer-to-peer
protocols (IDMS) / Mediate user authentication

Computer vi-
sion

- Process digital images
- Analyse digital images
- Understand digital images

Genome edit-
ing

- Target DNA sequence
- Break DNA sequence
- Edit DNA sequence

Hydrogen stor-
age

- Hydrogen production and compression
- Generate power from hydrogen gas
- Design vessel containment that is resistant to hydrogen
permeation and corrosion (+ thermal management)
- Manufacture fuel cell using hydrogen
- Provide hydrogen to a hydrogen-powered device (fill, tank)

Self-driving ve-
hicle

- Enable vehicles to make autonomous decisions
- Automate vehicle handling
- Vehicle-to-vehicle communication
- Communication between vehicle and rest-of-the-world

Notes: Human annotator accepts or rejects a candidate patent depending on whether the patent’s abstract clearly dis-
cusses one or more of the options listed.

Table 3.13: Data source

Variable Source Name

Abstract GPR abstract
Assignee PAT assignee_harmonized.name
Backward citations PAT citation.publication_number
Filing date PAT filing_date
Forward citations GPR cited_by.publication_number
Inventor PAT inventor_harmonized.name
Patent family PAT family_id
Patent office PAT country_code
Publication date PAT publication_date
Technological class (CPC) PAT cpc.code

Notes: PAT and GPR respectively refer to the patents-public-data:patents.publications and
patents-public-data:google_patents_research.publications tables. Data is publicly available from
the Google Patents Public Dataset.



Table 3.14: Utility patents first publication kind codes

Country code Kind code

US A, A1, B1
EP A1, A2
CN A
JP A
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